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Preface

This book grew out of an MBA course in analysis of financial time series that I have
been teaching at the University of Chicago since 1999. It also covers materials of
Ph.D. courses in time series analysis that I taught over the years. It is an introduc-
tory book intended to provide a comprehensive and systematic account of financial
econometric models and their application to modeling and prediction of financial
time series data. The goals are to learn basic characteristics of financial data, under-
stand the application of financial econometric models, and gain experience in ana-
lyzing financial time series.

The book will be useful as a text of time series analysis for MBA students with
finance concentration or senior undergraduate and graduate students in business, eco-
nomics, mathematics, and statistics who are interested in financial econometrics. The
book is also a useful reference for researchers and practitioners in business, finance,
and insurance facing Value at Risk calculation, volatility modeling, and analysis of
serially correlated data.

The distinctive features of this book include the combination of recent devel-
opments in financial econometrics in the econometric and statistical literature. The
developments discussed include the timely topics of Value at Risk (VaR), high-
frequency data analysis, and Markov Chain Monte Carlo (MCMC) methods. In par-
ticular, the book covers some recent results that are yet to appear in academic jour-
nals; see Chapter 6 on derivative pricing using jump diffusion with closed-form for-
mulas, Chapter 7 on Value at Risk calculation using extreme value theory based on
a nonhomogeneous two-dimensional Poisson process, and Chapter 9 on multivari-
ate volatility models with time-varying correlations. MCMC methods are introduced
because they are powerful and widely applicable in financial econometrics. These
methods will be used extensively in the future.

Another distinctive feature of this book is the emphasis on real examples and data
analysis. Real financial data are used throughout the book to demonstrate applica-
tions of the models and methods discussed. The analysis is carried out by using sev-
eral computer packages; the SCA (the Scientific Computing Associates) for build-
ing linear time series models, the RATS (Regression Analysis for Time Series) for
estimating volatility models, and the S-Plus for implementing neural networks and
obtaining postscript plots. Some commands required to run these packages are given

xi



xii PREFACE

in appendixes of appropriate chapters. In particular, complicated RATS programs
used to estimate multivariate volatility models are shown in Appendix A of Chap-
ter 9. Some fortran programs written by myself and others are used to price simple
options, estimate extreme value models, calculate VaR, and to carry out Bayesian
analysis. Some data sets and programs are accessible from the World Wide Web at
http://www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts.

The book begins with some basic characteristics of financial time series data in
Chapter 1. The other chapters are divided into three parts. The first part, consisting
of Chapters 2 to 7, focuses on analysis and application of univariate financial time
series. The second part of the book covers Chapters 8 and 9 and is concerned with
the return series of multiple assets. The final part of the book is Chapter 10, which
introduces Bayesian inference in finance via MCMC methods.

A knowledge of basic statistical concepts is needed to fully understand the book.
Throughout the chapters, I have provided a brief review of the necessary statistical
concepts when they first appear. Even so, a prerequisite in statistics or business statis-
tics that includes probability distributions and linear regression analysis is highly
recommended. A knowledge in finance will be helpful in understanding the applica-
tions discussed throughout the book. However, readers with advanced background in
econometrics and statistics can find interesting and challenging topics in many areas
of the book.

An MBA course may consist of Chapters 2 and 3 as a core component, followed
by some nonlinear methods (e.g., the neural network of Chapter 4 and the appli-
cations discussed in Chapters 5-7 and 10). Readers who are interested in Bayesian
inference may start with the first five sections of Chapter 10.

Research in financial time series evolves rapidly and new results continue to
appear regularly. Although I have attempted to provide broad coverage, there are
many subjects that I do not cover or can only mention in passing.

I sincerely thank my teacher and dear friend, George C. Tiao, for his guid-
ance, encouragement and deep conviction regarding statistical applications over the
years. I am grateful to Steve Quigley, Heather Haselkorn, Leslie Galen, Danielle
LaCourciere, and Amy Hendrickson for making the publication of this book pos-
sible, to Richard Smith for sending me the estimation program of extreme value
theory, to Bonnie K. Ray for helpful comments on several chapters, to Steve Kou
for sending me his preprint on jump diffusion models, to Robert E. McCulloch for
many years of collaboration on MCMC methods, to many students of my courses in
analysis of financial time series for their feedback and inputs, and to Jeffrey Russell
and Michael Zhang for insightful discussions concerning analysis of high-frequency
financial data. To all these wonderful people I owe a deep sense of gratitude. I
am also grateful to the support of the Graduate School of Business, University of
Chicago and the National Science Foundation. Finally, my heart goes to my wife,
Teresa, for her continuous support, encouragement, and understanding, to Julie,
Richard, and Vicki for bringing me joys and inspirations; and to my parents for their
love and care.

R. S. T.
Chicago, Illinois



C H A P T E R 1

Financial Time Series and
Their Characteristics

Financial time series analysis is concerned with theory and practice of asset val-
uation over time. It is a highly empirical discipline, but like other scientific fields
theory forms the foundation for making inference. There is, however, a key feature
that distinguishes financial time series analysis from other time series analysis. Both
financial theory and its empirical time series contain an element of uncertainty. For
example, there are various definitions of asset volatility, and for a stock return series,
the volatility is not directly observable. As a result of the added uncertainty, statistical
theory and methods play an important role in financial time series analysis.

The objective of this book is to provide some knowledge of financial time series,
introduce some statistical tools useful for analyzing these series, and gain experi-
ence in financial applications of various econometric methods. We begin with the
basic concepts of asset returns and a brief introduction to the processes to be dis-
cussed throughout the book. Chapter 2 reviews basic concepts of linear time series
analysis such as stationarity and autocorrelation function, introduces simple linear
models for handling serial dependence of the series, and discusses regression models
with time series errors, seasonality, unit-root nonstationarity, and long memory pro-
cesses. Chapter 3 focuses on modeling conditional heteroscedasticity (i.e., the condi-
tional variance of an asset return). It discusses various econometric models developed
recently to describe the evolution of volatility of an asset return over time. In Chap-
ter 4, we address nonlinearity in financial time series, introduce test statistics that can
discriminate nonlinear series from linear ones, and discuss several nonlinear models.
The chapter also introduces nonparametric estimation methods and neural networks
and shows various applications of nonlinear models in finance. Chapter 5 is con-
cerned with analysis of high-frequency financial data and its application to market
microstructure. It shows that nonsynchronous trading and bid-ask bounce can intro-
duce serial correlations in a stock return. It also studies the dynamic of time duration
between trades and some econometric models for analyzing transactions data. In
Chapter 6, we introduce continuous-time diffusion models and Ito’s lemma. Black-
Scholes option pricing formulas are derived and a simple jump diffusion model is
used to capture some characteristics commonly observed in options markets. Chap-
ter 7 discusses extreme value theory, heavy-tailed distributions, and their application
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2 FINANCIAL TIME SERIES AND THEIR CHARACTERISTICS

to financial risk management. In particular, it discusses various methods for calcu-
lating Value at Risk of a financial position. Chapter 8 focuses on multivariate time
series analysis and simple multivariate models. It studies the lead-lag relationship
between time series and discusses ways to simplify the dynamic structure of a mul-
tivariate series and methods to reduce the dimension. Co-integration and threshold
co-integration are introduced and used to investigate arbitrage opportunity in finan-
cial markets. In Chapter 9, we introduce multivariate volatility models, including
those with time-varying correlations, and discuss methods that can be used to repa-
rameterize a conditional covariance matrix to satisfy the positiveness constraint and
reduce the complexity in volatility modeling. Finally, in Chapter 10, we introduce
some newly developed Monte Carlo Markov Chain (MCMC) methods in the statis-
tical literature and apply the methods to various financial research problems, such as
the estimation of stochastic volatility and Markov switching models.

The book places great emphasis on application and empirical data analysis. Every
chapter contains real examples, and, in many occasions, empirical characteristics of
financial time series are used to motivate the development of econometric models.
Computer programs and commands used in data analysis are provided when needed.
In some cases, the programs are given in an appendix. Many real data sets are also
used in the exercises of each chapter.

1.1 ASSET RETURNS

Most financial studies involve returns, instead of prices, of assets. Campbell, Lo,
and MacKinlay (1997) give two main reasons for using returns. First, for average
investors, return of an asset is a complete and scale-free summary of the investment
opportunity. Second, return series are easier to handle than price series because the
former have more attractive statistical properties. There are, however, several defini-
tions of an asset return.

Let Pt be the price of an asset at time index t . We discuss some definitions of
returns that are used throughout the book. Assume for the moment that the asset
pays no dividends.

One-Period Simple Return
Holding the asset for one period from date t − 1 to date t would result in a simple
gross return

1 + Rt = Pt

Pt−1
or Pt = Pt−1(1 + Rt ) (1.1)

The corresponding one-period simple net return or simple return is

Rt = Pt

Pt−1
− 1 = Pt − Pt−1

Pt−1
. (1.2)
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Multiperiod Simple Return
Holding the asset for k periods between dates t − k and t gives a k-period simple
gross return

1 + Rt [k] = Pt

Pt−k
= Pt

Pt−1
× Pt−1

Pt−2
× · · · × Pt−k+1

Pt−k

= (1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1)

=
k−1∏
j=0

(1 + Rt− j ).

Thus, the k-period simple gross return is just the product of the k one-period simple
gross returns involved. This is called a compound return. The k-period simple net
return is Rt [k] = (Pt − Pt−k)/Pt−k .

In practice, the actual time interval is important in discussing and comparing
returns (e.g., monthly return or annual return). If the time interval is not given, then
it is implicitly assumed to be one year. If the asset was held for k years, then the
annualized (average) return is defined as

Annualized {Rt [k]} =
[

k−1∏
j=0

(1 + Rt− j )

]1/k

− 1.

This is a geometric mean of the k one-period simple gross returns involved and can
be computed by

Annualized {Rt [k]} = exp

[
1

k

k−1∑
j=0

ln(1 + Rt− j )

]
− 1,

where exp(x) denotes the exponential function and ln(x) is the natural logarithm
of the positive number x . Because it is easier to compute arithmetic average than
geometric mean and the one-period returns tend to be small, one can use a first-order
Taylor expansion to approximate the annualized return and obtain

Annualized {Rt [k]} ≈ 1

k

k−1∑
j=0

Rt− j . (1.3)

Accuracy of the approximation in Eq. (1.3) may not be sufficient in some applica-
tions, however.

Continuous Compounding
Before introducing continuously compounded return, we discuss the effect of com-
pounding. Assume that the interest rate of a bank deposit is 10% per annum and
the initial deposit is $1.00. If the bank pays interest once a year, then the net value
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Table 1.1. Illustration of the Effects of Compounding: The Time Interval Is 1 Year and
the Interest Rate is 10% per Annum.

Type Number of payments Interest rate per period Net Value

Annual 1 0.1 $1.10000
Semiannual 2 0.05 $1.10250
Quarterly 4 0.025 $1.10381
Monthly 12 0.0083 $1.10471

Weekly 52
0.1

52
$1.10506

Daily 365
0.1

365
$1.10516

Continuously ∞ $1.10517

of the deposit becomes $1(1+0.1) = $1.1 one year later. If the bank pays inter-
est semi-annually, the 6-month interest rate is 10%/2 = 5% and the net value is
$1(1 + 0.1/2)2 = $1.1025 after the first year. In general, if the bank pays inter-
est m times a year, then the interest rate for each payment is 10%/m and the net
value of the deposit becomes $1(1 + 0.1/m)m one year later. Table 1.1 gives the
results for some commonly used time intervals on a deposit of $1.00 with inter-
est rate 10% per annum. In particular, the net value approaches $1.1052, which is
obtained by exp(0.1) and referred to as the result of continuous compounding. The
effect of compounding is clearly seen.

In general, the net asset value A of continuous compounding is

A = C exp(r × n), (1.4)

where r is the interest rate per annum, C is the initial capital, and n is the number of
years. From Eq. (1.4), we have

C = A exp(−r × n), (1.5)

which is referred to as the present value of an asset that is worth A dollars n years
from now, assuming that the continuously compounded interest rate is r per annum.

Continuously Compounded Return
The natural logarithm of the simple gross return of an asset is called the continuously
compounded return or log return:

rt = ln(1 + Rt ) = ln
Pt

Pt−1
= pt − pt−1, (1.6)

where pt = ln(Pt ). Continuously compounded returns rt enjoy some advantages
over the simple net returns Rt . First, consider multiperiod returns. We have
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rt [k] = ln(1 + Rt [k]) = ln[(1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1)]
= ln(1 + Rt )+ ln(1 + Rt−1)+ · · · + ln(1 + Rt−k+1)

= rt + rt−1 + · · · + rt−k+1.

Thus, the continuously compounded multiperiod return is simply the sum of contin-
uously compounded one-period returns involved. Second, statistical properties of log
returns are more tractable.

Portfolio Return
The simple net return of a portfolio consisting of N assets is a weighted average
of the simple net returns of the assets involved, where the weight on each asset is
the percentage of the portfolio’s value invested in that asset. Let p be a portfolio
that places weight wi on asset i , then the simple return of p at time t is Rp,t =∑N

i=1 wi Rit , where Rit is the simple return of asset i .
The continuously compounded returns of a portfolio, however, do not have the

above convenient property. If the simple returns Rit are all small in magnitude, then
we have rp,t ≈ ∑N

i=1wi ri t , where rp,t is the continuously compounded return of the
portfolio at time t . This approximation is often used to study portfolio returns.

Dividend Payment
If an asset pays dividends periodically, we must modify the definitions of asset
returns. Let Dt be the dividend payment of an asset between dates t − 1 and t and Pt

be the price of the asset at the end of period t . Thus, dividend is not included in Pt .
Then the simple net return and continuously compounded return at time t become

Rt = Pt + Dt

Pt−1
− 1, rt = ln(Pt + Dt )− ln(Pt−1).

Excess Return
Excess return of an asset at time t is the difference between the asset’s return and the
return on some reference asset. The reference asset is often taken to be riskless, such
as a short-term U.S. Treasury bill return. The simple excess return and log excess
return of an asset are then defined as

Zt = Rt − R0t , zt = rt − r0t , (1.7)

where R0t and r0t are the simple and log returns of the reference asset, respectively.
In the finance literature, the excess return is thought of as the payoff on an arbitrage
portfolio that goes long in an asset and short in the reference asset with no net initial
investment.

Remark: A long financial position means owning the asset. A short position
involves selling asset one does not own. This is accomplished by borrowing the asset
from an investor who has purchased. At some subsequent date, the short seller is
obligated to buy exactly the same number of shares borrowed to pay back the lender.
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Because the repayment requires equal shares rather than equal dollars, the short seller
benefits from a decline in the price of the asset. If cash dividends are paid on the asset
while a short position is maintained, these are paid to the buyer of the short sale. The
short seller must also compensate the lender by matching the cash dividends from his
own resources. In other words, the short seller is also obligated to pay cash dividends
on the borrowed asset to the lender; see Cox and Rubinstein (1985).

Summary of Relationship
The relationships between simple return Rt and continuously compounded (or log)
return rt are

rt = ln(1 + Rt ), Rt = ert − 1.

Temporal aggregation of the returns produces

1 + Rt [k] = (1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1),

rt [k] = rt + rt−1 + · · · + rt−k+1.

If the continuously compounded interest rate is r per annum, then the relationship
between present and future values of an asset is

A = C exp(r × n), C = A exp(−r × n).

1.2 DISTRIBUTIONAL PROPERTIES OF RETURNS

To study asset returns, it is best to begin with their distributional properties. The
objective here is to understand the behavior of the returns across assets and over
time. Consider a collection of N assets held for T time periods, say t = 1, . . . , T .
For each asset i , let rit be its log return at time t . The log returns under study
are {rit ; i = 1, . . . , N ; t = 1, . . . , T }. One can also consider the simple returns
{Rit ; i = 1, . . . , N ; t = 1, . . . , T } and the log excess returns {zit ; i = 1, . . . , N ;
t = 1, . . . , T }.

1.2.1 Review of Statistical Distributions and Their Moments

We briefly review some basic properties of statistical distributions and the moment
equations of a random variable. Let Rk be the k-dimensional Euclidean space. A
point in Rk is denoted by x ∈ Rk . Consider two random vectors X = (X1, . . . , Xk)

′
and Y = (Y1, . . . ,Yq)

′. Let P(X ∈ A,Y ∈ B) be the probability that X is in the
subspace A ⊂ Rk and Y is in the subspace B ⊂ Rq . For most of the cases considered
in this book, both random vectors are assumed to be continuous.
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Joint Distribution
The function

FX,Y (x, y;θ) = P(X ≤ x,Y ≤ y),

where x ∈ R p , y ∈ Rq , and the inequality “≤” is a component-by-component
operation, is a joint distribution function of X and Y with parameter θ. Behavior
of X and Y is characterized by FX,Y (x, y;θ). If the joint probability density function
fx,y(x, y;θ) of X and Y exists, then

FX,Y (x, y;θ) =
∫ x

−∞

∫ y

−∞
fx,y(w, z;θ)dzdw.

In this case, X and Y are continuous random vectors.

Marginal Distribution
The marginal distribution of X is given by

FX (x;θ) = FX,Y (x,∞, . . . ,∞;θ).

Thus, the marginal distribution of X is obtained by integrating out Y. A similar defi-
nition applies to the marginal distribution of Y.

If k = 1, X is a scalar random variable and the distribution function becomes

FX (x) = P(X ≤ x;θ),

which is known as the cumulative distribution function (CDF) of X . The CDF of a
random variable is nondecreasing [i.e., FX (x1) ≤ FX (x2) if x1 ≤ x2, and satisfies
FX (−∞) = 0 and FX (∞) = 1]. For a given probability p, the smallest real number
x p such that p ≤ FX (x p) is called the pth quantile of the random variable X . More
specifically,

x p = inf
x

{x | p ≤ FX (x)}.

We use CDF to compute the p value of a test statistic in the book.

Conditional Distribution
The conditional distribution of X given Y ≤ y is given by

FX |Y≤y(x;θ) = P(X ≤ x,Y ≤ y)
P(Y ≤ y)

.

If the probability density functions involved exist, then the conditional density of X
given Y = y is
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fx |y(x;θ) = fx,y(x, y;θ)
fy(y;θ) , (1.8)

where the marginal density function fy(y;θ) is obtained by

fy(y;θ) =
∫ ∞

−∞
fx,y(x, y;θ)dx.

From Eq. (1.8), the relation among joint, marginal, and conditional distributions is

fx,y(x, y;θ) = fx |y(x;θ)× fy(y;θ). (1.9)

This identity is used extensively in time series analysis (e.g., in maximum likeli-
hood estimation). Finally, X and Y are independent random vectors if and only if
fx |y(x;θ) = fx (x;θ). In this case, fx,y(x, y;θ) = fx (x;θ) fy(y;θ).

Moments of a Random Variable
The �-th moment of a continuous random variable X is defined as

m′
� = E(X�) =

∫ ∞

−∞
x� f (x) dx,

where “E” stands for expectation and f (x) is the probability density function of
X . The first moment is called the mean or expectation of X . It measures the central
location of the distribution. We denote the mean of X byµx . The �-th central moment
of X is defined as

m� = E[(X − µx )
�] =

∫ ∞

−∞
(x − µx )

� f (x) dx

provided that the integral exists. The second central moment, denoted by σ 2
x , mea-

sures the variability of X and is called the variance of X . The positive square root, σx ,
of variance is the standard deviation of X . The first two moments of a random vari-
able uniquely determine a normal distribution. For other distributions, higher order
moments are also of interest.

The third central moment measures the symmetry of X with respect to its mean,
whereas the 4th central moment measures the tail behavior of X . In statistics, skew-
ness and kurtosis, which are normalized 3rd and 4th central moments of X , are often
used to summarize the extent of asymmetry and tail thickness. Specifically, the skew-
ness and kurtosis of X are defined as

S(x) = E

[
(X − µx )

3

σ 3
x

]
, K (x) = E

[
(X − µx )

4

σ 4
x

]
.
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The quantity K (x) − 3 is called the excess kurtosis because K (x) = 3 for a nor-
mal distribution. Thus, the excess kurtosis of a normal random variable is zero. A
distribution with positive excess kurtosis is said to have heavy tails, implying that
the distribution puts more mass on the tails of its support than a normal distribution
does. In practice, this means that a random sample from such a distribution tends to
contain more extreme values.

In application, skewness and kurtosis can be estimated by their sample counter-
parts. Let {x1, . . . , xT } be a random sample of X with T observations. The sample
mean is

µ̂x = 1

T

T∑
t=1

xt , (1.10)

the sample variance is

σ̂ 2
x = 1

T − 1

T∑
t=1

(xt − µ̂x )
2, (1.11)

the sample skewness is

Ŝ(x) = 1

(T − 1)σ̂ 3
x

T∑
t=1

(xt − µ̂x )
3, (1.12)

and the sample kurtosis is

K̂ (x) = 1

(T − 1)σ̂ 4
x

T∑
t=1

(xt − µ̂x )
4. (1.13)

Under normality assumption, Ŝ(x) and K̂ (x) are distributed asymptotically as nor-
mal with zero mean and variances 6/T and 24/T , respectively; see Snedecor and
Cochran (1980, p. 78).

1.2.2 Distributions of Returns

The most general model for the log returns {rit ; i = 1, . . . , N ; t = 1, . . . , T } is its
joint distribution function:

Fr (r11, . . . , rN1; r12, . . . , rN2; . . . ; r1T , . . . , rN T ; Y;θ), (1.14)

where Y is a state vector consisting of variables that summarize the environment
in which asset returns are determined and θ is a vector of parameters that uniquely
determine the distribution function Fr (.). The probability distribution Fr (.) governs
the stochastic behavior of the returns rit and Y. In many financial studies, the state
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vector Y is treated as given and the main concern is the conditional distribution of
{rit } given Y. Empirical analysis of asset returns is then to estimate the unknown
parameter θ and to draw statistical inference about behavior of {rit } given some past
log returns.

The model in Eq. (1.14) is too general to be of practical value. However, it pro-
vides a general framework with respect to which an econometric model for asset
returns rit can be put in a proper perspective.

Some financial theories such as the Capital Asset Pricing Model (CAPM) of
Sharpe (1964) focus on the joint distribution of N returns at a single time index t
(i.e., the distribution of {r1t , . . . , rNt }). Other theories emphasize the dynamic struc-
ture of individual asset returns (i.e., the distribution of {ri1, . . . , riT } for a given asset
i). In this book, we focus on both. In the univariate analysis of Chapters 2 to 7, our
main concern is the joint distribution of {rit }T

t=1 for asset i . To this end, it is useful
to partition the joint distribution as

F(ri1, . . . , riT ;θ) = F(ri1)F(ri2 | r1t ) · · · F(riT | ri,T −1, . . . , ri1)

= F(ri1)

T∏
t=2

F(rit | ri,t−1, . . . , ri1). (1.15)

This partition highlights the temporal dependencies of the log return rit . The main
issue then is the specification of the conditional distribution F(rit | ri,t−1, ·)—in par-
ticular, how the conditional distribution evolves over time. In finance, different dis-
tributional specifications lead to different theories. For instance, one version of the
random-walk hypothesis is that the conditional distribution F(rit | ri,t−1, . . . , ri1)

is equal to the marginal distribution F(rit ). In this case, returns are temporally inde-
pendent and, hence, not predictable.

It is customary to treat asset returns as continuous random variables, especially
for index returns or stock returns calculated at a low frequency, and use their proba-
bility density functions. In this case, using the identity in Eq. (1.9), we can write the
partition in Eq. (1.15) as

f (ri1, . . . , riT ;θ) = f (ri1;θ)
T∏

t=2

f (rit | ri,t−1, . . . , ri1,θ). (1.16)

For high-frequency asset returns, discreteness becomes an issue. For example, stock
prices change in multiples of a tick size in the New York Stock Exchange (NYSE).
The tick size was one eighth of a dollar before July 1997 and was one sixteenth of
a dollar from July 1997 to January 2001. Therefore, the tick-by-tick return of an
individual stock listed on NYSE is not continuous. We discuss high-frequency stock
price changes and time durations between price changes later in Chapter 5.

Remark: On August 28, 2000, the NYSE began a pilot program with seven
stocks priced in decimals and the American Stock Exchange (AMEX) began a pilot
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program with six stocks and two options classes. The NYSE added 57 stocks and
94 stocks to the program on September 25 and December 4, 2000, respectively. All
NYSE and AMEX stocks started trading in decimals on January 29, 2001.

Equation (1.16) suggests that conditional distributions are more relevant than
marginal distributions in studying asset returns. However, the marginal distributions
may still be of some interest. In particular, it is easier to estimate marginal distri-
butions than conditional distributions using past returns. In addition, in some cases,
asset returns have weak empirical serial correlations, and, hence, their marginal dis-
tributions are close to their conditional distributions.

Several statistical distributions have been proposed in the literature for the
marginal distributions of asset returns, including normal distribution, lognormal dis-
tribution, stable distribution, and scale-mixture of normal distributions. We briefly
discuss these distributions.

Normal Distribution
A traditional assumption made in financial study is that the simple returns {Rit | t =
1, . . . , T } are independently and identically distributed as normal with fixed mean
and variance. This assumption makes statistical properties of asset returns tractable.
But it encounters several difficulties. First, the lower bound of a simple return is
−1. Yet normal distribution may assume any value in the real line and, hence, has
no lower bound. Second, if Rit is normally distributed, then the multiperiod simple
return Rit [k] is not normally distributed because it is a product of one-period returns.
Third, the normality assumption is not supported by many empirical asset returns,
which tend to have a positive excess kurtosis.

Lognormal Distribution
Another commonly used assumption is that the log returns rt of an asset is inde-
pendent and identically distributed (iid) as normal with mean µ and variance σ 2.
The simple returns are then iid lognormal random variables with mean and variance
given by

E(Rt ) = exp

(
µ+ σ 2

2

)
− 1, Var(Rt ) = exp(2µ+ σ 2)[exp(σ 2)− 1]. (1.17)

These two equations are useful in studying asset returns (e.g., in forecasting using
models built for log returns). Alternatively, let m1 and m2 be the mean and vari-
ance of the simple return Rt , which is lognormally distributed. Then the mean and
variance of the corresponding log return rt are

E(rt ) = ln

 m1 + 1√
1 + m2

(1+m1)
2

 , Var(rt ) = ln

[
1 + m2

(1 + m1)2

]
.

Because the sum of a finite number of iid normal random variables is normal,
rt [k] is also normally distributed under the normal assumption for {rt }. In addition,
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there is no lower bound for rt , and the lower bound for Rt is satisfied using 1+ Rt =
exp(rt ). However, the lognormal assumption is not consistent with all the properties
of historical stock returns. In particular, many stock returns exhibit a positive excess
kurtosis.

Stable Distribution
The stable distributions are a natural generalization of normal in that they are sta-
ble under addition, which meets the need of continuously compounded returns rt .
Furthermore, stable distributions are capable of capturing excess kurtosis shown by
historical stock returns. However, non-normal stable distributions do not have a finite
variance, which is in conflict with most finance theories. In addition, statistical mod-
eling using non-normal stable distributions is difficult. An example of non-normal
stable distributions is the Cauchy distribution, which is symmetric with respect to its
median, but has infinite variance.

Scale Mixture of Normal Distributions
Recent studies of stock returns tend to use scale mixture or finite mixture of normal
distributions. Under the assumption of scale mixture of normal distributions, the log
return rt is normally distributed with mean µ and variance σ 2 [i.e., rt ∼ N (µ, σ 2)].
However, σ 2 is a random variable that follows a positive distribution (e.g., σ−2 fol-
lows a Gamma distribution). An example of finite mixture of normal distributions
is

rt ∼ (1 − X)N (µ, σ 2
1 )+ X N (µ, σ 2

2 ),

where 0 ≤ α ≤ 1, σ 2
1 is small and σ 2

2 is relatively large. For instance, with α =
0.05, the finite mixture says that 95% of the returns follow N (µ, σ 2

1 ) and 5% follow
N (µ, σ 2

2 ). The large value of σ 2
2 enables the mixture to put more mass at the tails of

its distribution. The low percentage of returns that are from N (µ, σ 2
2 ) says that the

majority of the returns follow a simple normal distribution. Advantages of mixtures
of normal include that they maintain the tractability of normal, have finite higher
order moments, and can capture the excess kurtosis. Yet it is hard to estimate the
mixture parameters (e.g., the α in the finite-mixture case).

Figure 1.1 shows the probability density functions of a finite mixture of nor-
mal, Cauchy, and standard normal random variable. The finite mixture of normal
is 0.95N (0, 1)+ 0.05N (0, 16) and the density function of Cauchy is

f (x) = 1

π(1 + x2)
, −∞ < x < ∞.

It is seen that Cauchy distribution has fatter tails than the finite mixture of normal,
which in turn has fatter tails than the standard normal.
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Figure 1.1. Comparison of finite-mixture, stable, and standard normal density functions.

1.2.3 Multivariate Returns

Let rt = (r1t , . . . , rNt )
′ be the log returns of N assets at time t . The multivariate

analyses of Chapters 8 and 9 are concerned with the joint distribution of {rt }T
t=1.

This joint distribution can be partitioned in the same way as that of Eq. (1.15). The
analysis is then focused on the specification of the conditional distribution function
F(rt | rt−1, . . . , r1,θ). In particular, how the conditional expectation and conditional
covariance matrix of rt evolve over time constitute the main subjects of Chapters 8
and 9.

The mean vector and covariance matrix of a random vector X = (X1, . . . , X p) are
defined as

E(X) = µx = [E(X1), . . . , E(X p)]′,
Cov(X) = Σx = E[(X − µx )(X − µx )

′]

provided that the expectations involved exist. When the data {x1, . . . , xT } of X are
available, the sample mean and covariance matrix are defined as

µ̂x = 1

T

T∑
t=1

xt , Σ̂x = 1

T

T∑
t=1

(xt − µ̂x )(xt − µ̂x )
′.



14 FINANCIAL TIME SERIES AND THEIR CHARACTERISTICS

These sample statistics are consistent estimates of their theoretical counterparts pro-
vided that the covariance matrix of X exists. In the finance literature, multivariate
normal distribution is often used for the log return rt .

1.2.4 Likelihood Function of Returns

The partition of Eq. (1.15) can be used to obtain the likelihood function of the log
returns {r1, . . . , rT } of an asset, where for ease in notation the subscript i is omitted
from the log return. If the conditional distribution f (rt | rt−1, . . . , r1,θ) is normal
with mean µt and variance σ 2

t , then θ consists of the parameters in µt and σ 2
t and

the likelihood function of the data is

f (r1, . . . , rT ;θ) = f (r1;θ)
T∏

t=2

1√
2πσt

exp

[
−(rt − µt )

2

2σ 2
t

]
, (1.18)

where f (r1;θ) is the marginal density function of the first observation r1. The value
of θ that maximizes this likelihood function is the maximum likelihood estimate
(MLE) of θ. Since log function is monotone, the MLE can be obtained by maximiz-
ing the log likelihood function,

ln f (r1, . . . , rT ;θ) = ln f (r1;θ)− 1

2

T∑
t=2

[
ln(2π)+ ln(σ 2

t )+ (rt − µt )
2

σ 2
t

]
,

which is easier to handle in practice. Log likelihood function of the data can be
obtained in a similar manner if the conditional distribution f (rt | rt−1, . . . , r1;θ) is
not normal.

1.2.5 Empirical Properties of Returns

The data used in this section are obtained from the Center for Research in Secu-
rity Prices (CRSP) of the University of Chicago. Dividend payments, if any, are
included in the returns. Figure 1.2 shows the time plots of monthly simple returns
and log returns of International Business Machines (IBM) stock from January 1926
to December 1997. A time plot shows the data against the time index. The upper plot
is for the simple returns. Figure 1.3 shows the same plots for the monthly returns of
value-weighted market index. As expected, the plots show that the basic patterns of
simple and log returns are similar.

Table 1.2 provides some descriptive statistics of simple and log returns for
selected U.S. market indexes and individual stocks. The returns are for daily and
monthly sample intervals and are in percentages. The data spans and sample sizes are
also given in the table. From the table, we make the following observations. (a) Daily
returns of the market indexes and individual stocks tend to have high excess kurtoses.
For monthly series, the returns of market indexes have higher excess kurtoses than
individual stocks. (b) The mean of a daily return series is close to zero, whereas that
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Figure 1.2. Time plots of monthly returns of IBM stock from January 1926 to December
1997. The upper panel is for simple net returns, and the lower panel is for log returns.
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Figure 1.3. Time plots of monthly returns of the value-weighted index from January 1926
to December 1997. The upper panel is for simple net returns, and the lower panel is for log
returns.
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Table 1.2. Descriptive Statistics for Daily and Monthly Simple and Log Returns of
Selected Indexes and Stocks. Returns Are in Percentages, and the Sample Period Ends
on December 31, 1997. The Statistics Are Defined in Equations (1.10) to (1.13), and VW
and EW Denote Value-Weighted and Equal-Weighted Indexes.

Stan. Excess
Security Start Size Mean Dev. Skew. Kurt. Min. Max.

(a) Daily simple returns (%)
VW 62/7/3 8938 0.049 0.798 −1.23 30.06 −17.18 8.67
EW 62/7/3 8938 0.083 0.674 −1.09 18.09 −10.48 6.95
I.B.M. 62/7/3 8938 0.050 1.479 0.01 11.34 −22.96 12.94
Intel 72/12/15 6329 0.138 2.880 −0.17 6.76 −29.57 26.38
3M 62/7/3 8938 0.051 1.395 −0.55 16.92 −25.98 11.54
Microsoft 86/3/14 2985 0.201 2.422 −0.47 12.08 −30.13 17.97
Citi-Grp 86/10/30 2825 0.125 2.124 −0.06 9.16 −21.74 20.75

(b) Daily log returns (%)
VW 62/7/3 8938 0.046 0.803 −1.66 40.06 −18.84 8.31
EW 62/7/3 8938 0.080 0.676 −1.29 19.98 −11.08 6.72
I.B.M. 62/7/3 8938 0.039 1.481 −0.33 15.21 −26.09 12.17
Intel 72/12/15 6329 0.096 2.894 −0.59 8.81 −35.06 23.41
3M 62/7/3 8938 0.041 1.403 −1.05 27.03 −30.08 10.92
Microsoft 86/3/14 2985 0.171 2.443 −1.10 19.65 −35.83 16.53
Citi-Grp 86/10/30 2825 0.102 2.128 −0.44 10.68 −24.51 18.86

(c) Monthly simple returns (%)
VW 26/1 864 0.99 5.49 0.23 8.13 −29.00 38.28
EW 26/1 864 1.32 7.54 1.65 15.24 −31.23 65.51
I.B.M. 26/1 864 1.42 6.70 0.17 1.94 −26.19 35.12
Intel 72/12 300 2.86 12.95 0.59 3.29 −44.87 62.50
3M 46/2 623 1.36 6.46 0.16 0.89 −27.83 25.77
Microsoft 86/4 141 4.26 10.96 0.81 2.32 −24.91 51.55
Citi-Grp 86/11 134 2.55 9.17 −0.14 0.47 −26.46 26.08

(d) Monthly log returns (%)
VW 26/1 864 0.83 5.48 −0.53 7.31 −34.25 32.41
EW 26/1 864 1.04 7.24 0.34 8.91 −37.44 50.38
I.B.M. 26/1 864 1.19 6.63 −0.22 2.05 −30.37 30.10
Intel 72/12 300 2.03 12.63 −0.32 3.20 −59.54 48.55
3M 46/2 623 1.15 6.39 −0.14 1.32 −32.61 22.92
Microsoft 86/4 141 3.64 10.29 0.29 1.32 −28.64 41.58
Citi-Grp 86/11 134 2.11 9.11 −0.50 1.14 −30.73 23.18

of a monthly return series is slightly larger. (c) Monthly returns have higher stan-
dard deviations than daily returns. (d) Among the daily returns, market indexes have
smaller standard deviations than individual stocks. This is in agreement with com-
mon sense. (e) The skewness is not a serious problem for both daily and monthly
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Figure 1.4. Comparison of empirical and normal densities for the monthly simple and log
returns of IBM stock. The sample period is from January 1926 to December 1997. The left
plot is for simple returns and the right plot for log returns. The normal density, shown by the
dashed line, uses the sample mean and standard deviation given in Table 1.2.

returns. (f) The descriptive statistics show that the difference between simple and log
returns is not substantial.

Figure 1.4 shows the empirical density functions of monthly simple and log
returns of IBM stock. Also shown, by a dashed line, in each graph is the nor-
mal probability density function evaluated by using the sample mean and standard
deviation of IBM returns given in Table 1.2. The plots indicate that the normality
assumption is questionable for monthly IBM stock returns. The empirical density
function has a higher peak around its mean, but fatter tails than that of the corre-
sponding normal distribution. In other words, the empirical density function is taller,
skinnier, but with a wider support than the corresponding normal density.

1.3 PROCESSES CONSIDERED

Besides the return series, we also consider the volatility process and the behavior of
extreme returns of an asset. The volatility process is concerned with the evolution of
conditional variance of the return over time. This is a topic of interest because, as
shown in Figures 1.2 and 1.3, the variabilities of returns vary over time and appear in
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clusters. In application, volatility plays an important role in pricing stock options. By
extremes of a return series, we mean the large positive or negative returns. Table 1.2
shows that the minimum and maximum of a return series can be substantial. The
negative extreme returns are important in risk management, whereas positive extreme
returns are critical to holding a short position. We study properties and applications
of extreme returns, such as the frequency of occurrence, the size of an extreme, and
the impacts of economic variables on the extremes, in Chapter 7.

Other financial time series considered in the book include interest rates, exchange
rates, bond yields, and quarterly earning per share of a company. Figure 1.5 shows
the time plots of two U.S. monthly interest rates. They are the 10-year and 1-year
Treasury constant maturity rates from April 1954 to January 2001. As expected, the
two interest rates moved in unison, but the 1-year rates appear to be more volatile.
Table 1.3 provides some descriptive statistics for selected U.S. financial time series.
The monthly bond returns obtained from CRSP are from January 1942 to December
1999. The interest rates are obtained from the Federal Reserve Bank of St Louis.
The weekly 3-month Treasury Bill rate started on January 8, 1954, and the 6-month
rate started on December 12, 1958. Both series ended on February 16, 2001. For the
interest rate series, the sample means are proportional to the time to maturity, but
the sample standard deviations are inversely proportional to the time to maturity. For
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Figure 1.5. Time plots of monthly U.S. interest rates from April 1954 to January 2001: (a) the
10-year Treasury constant maturity rate, and (b) the 1-year maturity rate.
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Table 1.3. Descriptive Statistics of Selected U.S. Financial Time Series. The Data Are in
Percentages. The Weekly 3-Month Treasury Bill Rate Started from January 8, 1954 and
the 6-Month Rate Started from December 12, 1958.

Stan. Excess
Maturity Mean Dev. Skew. Kurt. Min. Max.

(a) Monthly bond returns: Jan. 1942 to Dec. 1999, T = 696

30 years 0.43 2.53 0.66 2.77 −7.73 13.31
20 years 0.45 2.43 0.79 4.08 −8.41 15.24
10 years 0.45 1.97 0.71 2.72 −6.67 10.00
5 years 0.46 1.39 0.87 6.61 −5.80 10.61
1 year 0.44 0.53 2.50 16.72 −1.72 5.61

(b) Monthly Treasury rates: Apr. 1953 to Jan. 2001, T = 574

10 years 6.74 2.75 0.74 0.30 2.29 15.32
5 years 6.59 2.78 0.83 0.63 1.85 15.93
3 years 6.43 2.82 0.89 0.85 1.47 16.22
1 year 6.05 2.93 1.01 1.29 0.82 16.72

(c) Weekly Treasury Bill rates: end on February 16, 2001

6 months 6.08 2.56 1.26 1.82 2.35 15.76
3 months 5.51 2.76 1.14 1.88 0.58 16.76

the bond returns, the sample standard deviations are positively related to the time
to maturity, whereas the sample means remain stable for all maturities. Most of the
series considered have positive excess kurtoses.

With respect to the empirical characteristics of returns shown in Table 1.2, Chap-
ters 2 to 4 focus on the first four moments of a return series and Chapter 7 on
the behavior of minimum and maximum returns. Chapters 8 and 9 are concerned
with moments of and the relationships between multiple asset returns, and Chapter 5
addresses properties of asset returns when the time interval is small. An introduction
to mathematical finance is given in Chapter 6.

EXERCISES

1. Consider the daily stock returns of Alcoa (aa), American Express (axp), Walt
Disney (dis), Chicago Tribune (trb), and Tyco International (tyc) from January
1990 to December 1999 for 2528 observations. You may obtain the data directly
from CRSP or from files on the Web. The original data are the holding period
returns from CRSP. Those on files have been transformed into log returns and
are in percentages. Stock tick symbols are used to create file names (e.g., “d-
aa9099.dat” contains the daily log returns of Alcoa stock from 1990 to 1999).
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• Compute the sample mean, variance, skewness, excess kurtosis, minimum, and
maximum of the daily log returns.

• Transform the log returns into simple returns. Compute the sample mean, vari-
ance, skewness, excess kurtosis, and minimum and maximum of the daily sim-
ple returns.

• Are the sample means of log returns statistically different from zero? Use the
5% significance level to draw your conclusion and discuss their practical impli-
cations.

2. Consider the monthly stock returns of Alcoa (aa), General Motors (gm), Walt Dis-
ney (dis), and Hershey Foods (hsy) from January 1962 to December 1999 for 456
observations and those of American Express (axp) and Mellon Financial Corpo-
ration (mel) from January 1973 to December 1999 for 324 observations. Again,
you may obtain the data directly from CRSP or from the files on the Web. Tick
symbols and years involved are used to create file names (e.g., “m-mel7399.dat”
contains the monthly log returns, in percentage, of Mellon Financial Corporation
stock from January 1973 to December 1999).

• Compute the sample mean, variance, skewness, excess kurtosis, and minimum
and maximum of the monthly log returns.

• Transform the log returns into simple returns. Compute the sample mean, vari-
ance, skewness, excess kurtosis, and minimum and maximum of the monthly
simple returns.

• Are the sample means of log returns statistically different from zero? Use the
5% significance level to draw your conclusion and discuss their practical impli-
cations.

3. Focus on the monthly stock returns of Alcoa from 1962 to 1999.

• What is the average annual log return over the data span?
• What is the annualized (average) simple return over the data span?
• Consider an investment that invested one dollar on the Alcoa stock at the begin-

ning of 1962. What was the value of the investment at the end of 1999? Assume
that there were no transaction costs.

4. Repeat the same analysis as the prior problem for the monthly stock returns of
American Express.

5. Obtain the histograms of daily simple and log returns of American Express stock
from January 1990 to December 1999. Compare them with normal distributions
that have the same mean and standard deviation.

6. Daily foreign exchange rates can be obtained from the Federal Reserve Bank of
Chicago. The data are the noon buying rates in New York City certified by the
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Federal Reserve Bank of New York. Consider the exchange rates of Canadian
Dollar, German Mark, United Kingdom Pound, Japanese Yen, and French Franc
versus the U.S. Dollar from January 1994 to February 2001. The exchange values
are payable in foreign currencies, except for U.K. Pound which is in U.S. Dollars.
The data are also available in the file “forex-c.dat.”

• Compute the daily log returns of the five exchange rate series.
• Compute the sample mean, variance, skewness, excess kurtosis, and minimum

and maximum of the five log return series.
• Discuss the empirical characteristics of these exchange rate series.
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C H A P T E R 2

Linear Time Series Analysis
and Its Applications

In this chapter, we discuss basic theories of linear time series analysis, introduce
some simple econometric models useful for analyzing financial time series, and
apply the models to asset returns. Discussions of the concepts are brief with empha-
sis on those relevant to financial applications. Understanding the simple time series
models introduced here will go a long way to better appreciate the more sophisti-
cated financial econometric models of the later chapters. There are many time series
textbooks available. For basic concepts of linear time series analysis, see Box, Jenk-
ins, and Reinsel (1994, Chapters 2 and 3) and Brockwell and Davis (1996, Chapters
1–3).

Treating an asset return (e.g., log return rt of a stock) as a collection of ran-
dom variables over time, we have a time series {rt }. Linear time series analysis
provides a natural framework to study the dynamic structure of such a series. The
theories of linear time series discussed include stationarity, dynamic dependence,
autocorrelation function, modeling, and forecasting. The econometric models intro-
duced include (a) simple autoregressive (AR) models, (b) simple moving-average
(MA) models, (c) mixed autoregressive moving-average (ARMA) models, (d) sea-
sonal models, (e) regression models with time series errors, and (f) fractionally dif-
ferenced models for long-range dependence. For an asset return rt , simple models
attempt to capture the linear relationship between rt and information available prior
to time t . The information may contain the historical values of rt and the random vec-
tor Y in Eq. (1.14) that describes the economic environment under which the asset
price is determined. As such, correlation plays an important role in understanding
these models. In particular, correlations between the variable of interest and its past
values become the focus of linear time series analysis. These correlations are referred
to as serial correlations or autocorrelations. They are the basic tool for studying a
stationary time series.
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2.1 STATIONARITY

The foundation of time series analysis is stationarity. A time series {rt } is said to
be strictly stationary if the joint distribution of (rt1 , . . . , rtk ) is identical to that of
(rt1+t , . . . , rtk+t ) for all t , where k is an arbitrary positive integer and (t1, . . . , tk)
is a collection of k positive integers. In other words, strict stationarity requires that
the joint distribution of (rt1, . . . , rtk ) is invariant under time shift. This is a very
strong condition that is hard to verify empirically. A weaker version of stationarity
is often assumed. A time series {rt } is weakly stationary if both the mean of rt and
the covariance between rt and rt−� are time-invariant, where � is an arbitrary integer.
More specifically, {rt } is weakly stationary if (a) E(rt ) = µ, which is a constant, and
(b) Cov(rt , rt−�) = γ�, which only depends on �. In practice, suppose that we have
observed T data points {rt | t = 1, . . . , T }. The weak stationarity implies that the
time plot of the data would show that the T values fluctuate with constant variation
around a constant level.

Implicitly in the condition of weak stationarity, we assume that the first two
moments of rt are finite. From the definitions, if rt is strictly stationary and its first
two moments are finite, then rt is also weakly stationary. The converse is not true in
general. However, if the time series rt is normally distributed, then weak stationarity
is equivalent to strict stationarity. In this book, we are mainly concerned with weakly
stationary series.

The covariance γ� = Cov(rt , rt−�) is called the lag-� autocovariance of rt . It
has two important properties: (a) γ0 = Var(rt ) and (b) γ−� = γ�. The second
property holds because Cov(rt , rt−(−�)) = Cov(rt−(−�), rt ) = Cov(rt+�, rt ) =
Cov(rt1, rt1−�), where t1 = t + �.

In the finance literature, it is common to assume that an asset return series is
weakly stationary. This assumption can be checked empirically provided that a suffi-
cient number of historical returns are available. For example, one can divide the data
into subsamples and check the consistency of the results obtained.

2.2 CORRELATION AND AUTOCORRELATION FUNCTION

The correlation coefficient between two random variables X and Y is defined as

ρx,y = Cov(X,Y )√
Var(X)Var(Y )

= E[(X − µx )(Y − µy)]√
E(X − µx )2 E(Y − µy)2

,

where µx and µy are the mean of X and Y , respectively, and it is assumed that the
variances exist. This coefficient measures the strength of linear dependence between
X and Y , and it can be shown that −1 ≤ ρx,y ≤ 1 and ρx,y = ρy,x . The two random
variables are uncorrelated if ρx,y = 0. In addition, if both X and Y are normal
random variables, then ρx,y = 0 if and only if X and Y are independent. When the
sample {(xt , yt )}T

t=1 is available, the correlation can be consistently estimated by its
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sample counterpart

ρ̂x,y =
∑T

t=1(xt − x̄)(yt − ȳ)√∑T
t=1(xt − x̄)2

∑T
t=1(yt − ȳ)2

,

where x̄ = ∑T
t=1 xt/T and ȳ = ∑T

t=1 yt/T are the sample mean of X and Y ,
respectively.

Autocorrelation Function (ACF)
Consider a weakly stationary return series rt . When the linear dependence between
rt and its past values rt−i is of interest, the concept of correlation is generalized to
autocorrelation. The correlation coefficient between rt and rt−� is called the lag-�
autocorrelation of rt and is commonly denoted by ρ�, which under the weak station-
arity assumption is a function of � only. Specifically, we define

ρ� = Cov(rt , rt−�)√
Var(rt )Var(rt−�)

= Cov(rt , rt−�)
Var(rt )

= γ�

γ0
, (2.1)

where the property Var(rt ) = Var(rt−�) for a weakly stationary series is used. From
the definition, we have ρ0 = 1, ρ� = ρ−�, and −1 ≤ ρ� ≤ 1. In addition, a weakly
stationary series rt is not serially correlated if and only if ρ� = 0 for all � > 0.

For a given sample of returns {rt }T
t=1, let r̄ be the sample mean (i.e., r̄ =∑T

t=1 rt/T ). Then the lag-1 sample autocorrelation of rt is

ρ̂1 =
∑T

t=2(rt − r̄)(rt−1 − r̄)∑T
t=1(rt − r̄)2

.

Under some general conditions, ρ̂1 is a consistent estimate of ρ1. For example, if
{rt } is an independent and identically distributed (iid) sequence and E(r2

t ) < ∞,
then ρ̂1 is asymptotically normal with mean zero and variance 1/T ; see Brockwell
and Davis (1991, Theorem 7.2.2). This result can be used in practice to test the null
hypothesis Ho : ρ1 = 0 versus the alternative hypothesis Ha : ρ1 �= 0. The test
statistic is the usual t ratio, which is

√
T ρ̂1 and follows asymptotically the standard

normal distribution. In general, the lag-� sample autocorrelation of rt is defined as

ρ̂� =
∑T

t=�+1(rt − r̄)(rt−� − r̄)∑T
t=1(rt − r̄)2

, 0 ≤ � < T − 1. (2.2)

If {rt } is an iid sequence satisfying E(r2
t ) < ∞, then ρ̂� is asymptotically normal

with mean zero and variance 1/T for any fixed positive integer �. More generally, if
rt is a weakly stationary time series satisfying rt = µ+∑q

i=0 ψi at−i , where ψ0 = 1
and {a j } is a Gaussian white noise series, then ρ̂� is asymptotically normal with mean
zero and variance (1 + 2

∑q
i=1 ρ

2
i )/T for � > q. This is referred to as Bartlett’s for-

mula in the time series literature; see Box, Jenkins, and Reinsel (1994). The previous
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result can be used to perform the hypothesis testing of Ho : ρ� = 0 vs Ha : ρ� �= 0.
For more information about the asymptotic distribution of sample autocorrelations,
see Fuller (1976, Chapter 6) and Brockwell and Davis (1991, Chapter 7).

In finite samples, ρ̂� is a biased estimator of ρ�. The bias is in the order of 1/T ,
which can be substantial when the sample size T is small. In most financial applica-
tions, T is relatively large so that the bias is not serious.

Portmanteau Test
Financial applications often require to test jointly that several autocorrelations of rt

are zero. Box and Pierce (1970) propose the Portmanteau statistic

Q∗(m) = T
m∑
�=1

ρ̂2
�

as a test statistic for the null hypothesis Ho : ρ1 = · · · = ρm = 0 against the
alternative hypothesis Ha : ρi �= 0 for some i ∈ {1, . . . ,m}. Under the assumption
that {rt } is an iid sequence with certain moment conditions, Q∗(m) is asymptotically
a chi-squared random variable with m degrees of freedom.

Ljung and Box (1978) modify the Q∗(m) statistic as below to increase the power
of the test in finite samples,

Q(m) = T (T + 2)
m∑
�=1

ρ̂2
�

T − �
. (2.3)

In practice, the selection of m may affect the performance of the Q(m) statistic.
Several values of m are often used. Simulation studies suggest that the choice of
m ≈ ln(T ) provides better power performance.

The function ρ̂1, ρ̂2, . . . is called the sample autocorrelation function (ACF) of rt .
It plays an important role in linear time series analysis. As a matter of fact, a linear
time series model can be characterized by its ACF, and linear time series modeling
makes use of the sample ACF to capture the linear dynamic of the data. Figure 2.1
shows the sample autocorrelation functions of monthly simple and log returns of
IBM stock from January 1926 to December 1997. The two sample ACFs are very
close to each other, and they suggest that the serial correlations of monthly IBM stock
returns are very small, if any. The sample ACFs are all within their two standard-error
limits, indicating that they are not significant at the 5% level. In addition, for the
simple returns, the Ljung–Box statistics give Q(5) = 5.4 and Q(10) = 14.1, which
correspond to p value of 0.37 and 0.17, respectively, based on chi-squared distribu-
tions with 5 and 10 degrees of freedom. For the log returns, we have Q(5) = 5.8 and
Q(10) = 13.7 with p value 0.33 and 0.19, respectively. The joint tests confirm that
monthly IBM stock returns have no significant serial correlations. Figure 2.2 shows
the same for the monthly returns of the value-weighted index from the Center for
Research in Security Prices (CRSP), University of Chicago. There are some signifi-
cant serial correlations at the 5% level for both return series. The Ljung–Box statis-
tics give Q(5) = 27.8 and Q(10) = 36.0 for the simple returns and Q(5) = 26.9
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Figure 2.1. Sample autocorrelation functions of monthly simple and log returns of IBM
stock from January 1926 to December 1997. In each plot, the two horizontal lines denote
two standard-error limits of the sample ACF.

and Q(10) = 32.7 for the log returns. The p values of these four test statistics are
all less than 0.0003, suggesting that monthly returns of the value-weighted index are
serially correlated. Thus, the monthly market index return seems to have stronger
serial dependence than individual stock returns.

In the finance literature, a version of the Capital Asset Pricing Model (CAPM)
theory is that the return {rt } of an asset is not predictable and should have no auto-
correlations. Testing for zero autocorrelations has been used as a tool to check the
efficient market assumption. However, the way by which stock prices are determined
and index returns are calculated might introduce autocorrelations in the observed
return series. This is particularly so in analysis of high-frequency financial data. We
discuss some of these issues in Chapter 5.

2.3 WHITE NOISE AND LINEAR TIME SERIES

White Noise
A time series rt is called a white noise if {rt } is a sequence of independent and
identically distributed random variables with finite mean and variance. In particular,
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Figure 2.2. Sample autocorrelation functions of monthly simple and log returns of the value-
weighted index of U.S. Markets from January 1926 to December 1997. In each plot, the two
horizontal lines denote two standard-error limits of the sample ACF.

if rt is normally distributed with mean zero and variance σ 2, the series is called a
Gaussian white noise. For a white noise series, all the ACFs are zero. In practice,
if all sample ACFs are close to zero, then the series is a white noise series. Based
on Figures 2.1 and 2.2, the monthly returns of IBM stock are close to white noise,
whereas those of the value-weighted index are not.

The behavior of sample autocorrelations of the value-weighted index returns indi-
cates that for some asset returns it is necessary to model the serial dependence before
further analysis can be made. In what follows, we discuss some simple time series
models that are useful in modeling the dynamic structure of a time series. The con-
cepts presented are also useful later in modeling volatility of asset returns.

Linear Time Series
A time series rt is said to be linear if it can be written as

rt = µ+
∞∑

i=0

ψi at−i , (2.4)
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where µ is the mean of rt , ψ0 = 1 and {at } is a sequence of independent and iden-
tically distributed random variables with mean zero and a well-defined distribution
(i.e., {at } is a white noise series). In this book, we are mainly concerned with the
case where at is a continuous random variable. Not all financial time series are lin-
ear, however. We study nonlinearity and nonlinear models in Chapter 4.

For a linear time series in Eq. (2.4), the dynamic structure of rt is governed by
the coefficients ψi , which are called the ψ-weights of rt in the time series literature.
If rt is weakly stationary, we can obtain its mean and variance easily by using the
independence of {at } as

E(rt ) = µ, Var(rt ) = σ 2
a

∞∑
i=0

ψ2
i ,

where σ 2
a is the variance of at . Furthermore, the lag-� autocovariance of rt is

γ� = Cov(rt , rt−�) = E

[( ∞∑
i=0

ψi at−i

)( ∞∑
j=0

ψ j at−�− j

)]

= E

( ∞∑
i, j=0

ψiψ j at−i at−�− j

)

=
∞∑
j=0

ψ j+�ψ j E(a2
t−�− j ) = σ 2

a

∞∑
j=0

ψ jψ j+�.

Consequently, the ψ-weights are related to the autocorrelations of rt as follows:

ρ� = γ�

γ0
=
∑∞

i=0 ψiψi+�
1 +∑∞

i=1 ψ
2
i

, � ≥ 0, (2.5)

whereψ0 = 1. Linear time series models are econometric and statistical models used
to describe the pattern of the ψ-weights of rt .

2.4 SIMPLE AUTOREGRESSIVE MODELS

The fact that the monthly return rt of CRSP value-weighted index has a statistically
significant lag-1 autocorrelation indicates that the lagged return rt−1 might be useful
in predicting rt . A simple model that makes use of such predictive power is

rt = φ0 + φ1rt−1 + at , (2.6)

where {at } is assumed to be a white noise series with mean zero and variance σ 2
a .

This model is in the same form as the well-known simple linear regression model in
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which rt is the dependent variable and rt−1 is the explanatory variable. In the time
series literature, Model (2.6) is referred to as a simple autoregressive (AR) model
of order 1 or simply an AR(1) model. This simple model is also widely used in
stochastic volatility modeling when rt is replaced by its log volatility; see Chapters 3
and 10.

The AR(1) model in Eq. (2.6) has several properties similar to those of the simple
linear regression model. However, there are some significant differences between the
two models, which we discuss later. Here it suffices to note that an AR(1) model
implies that, conditional on the past return rt−1, we have

E(rt | rt−1) = φ0 + φ1rt−1, Var(rt | rt−1) = Var(at ) = σ 2
a .

That is, given the past return rt−1, the current return is centered around φ0 + φ1rt−1
with variability σ 2

a . This is a Markov property such that conditional on rt−1, the
return rt is not correlated with rt−i for i > 1. Obviously, there are situations in which
rt−1 alone cannot determine the conditional expectation of rt and a more flexible
model must be sought. A straightforward generalization of the AR(1) model is the
AR(p) model

rt = φ0 + φ1rt−1 + · · · + φprt−p + at , (2.7)

where p is a non-negative integer and {at } is defined in Eq. (2.6). This model says that
the past p values rt−i (i = 1, . . . , p) jointly determine the conditional expectation
of rt given the past data. The AR(p) model is in the same form as a multiple linear
regression model with lagged values serving as the explanatory variables.

2.4.1 Properties of AR models

For effective use of AR models, it pays to study their basic properties. We discuss
properties of AR(1) and AR(2) models in detail and give the results for the general
AR(p) model.

AR(1) Model
We begin with the sufficient and necessary condition for weak stationarity of the
AR(1) model in Eq. (2.6). Assuming that the series is weakly stationary, we have
E(rt ) = µ, Var(rt ) = γ0, and Cov(rt , rt− j ) = γ j , where µ and γ0 are constant and
γ j is a function of j , not t . We can easily obtain the mean, variance, and autocor-
relations of the series as follows. Taking the expectation of Eq. (2.6) and because
E(at ) = 0, we obtain

E(rt ) = φ0 + φ1 E(rt−1).

Under the stationarity condition, E(rt ) = E(rt−1) = µ and hence

µ = φ0 + φ1µ or E(rt ) = µ = φ0

1 − φ1
.
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This result has two implications for rt . First, the mean of rt exists if φ1 �= 1. Second,
the mean of rt is zero if and only if φ0 = 0. Thus, for a stationary AR(1) process, the
constant term φ0 is related to the mean of rt and φ0 = 0 implies that E(rt ) = 0.

Next, using φ0 = (1 − φ1)µ, the AR(1) model can be rewritten as

rt − µ = φ1(rt−1 − µ)+ at . (2.8)

By repeated substitutions, the prior equation implies that

rt − µ = at + φ1at−1 + φ2
1at−2 + · · ·

=
∞∑

i=0

φi
1at−i . (2.9)

Thus, rt − µ is a linear function of at−i for i ≥ 0. Using this property and the
independence of the series {at }, we obtain E[(rt − µ)at+1] = 0. By the stationarity
assumption, we have Cov(rt−1, at ) = E[(rt−1 − µ)at ] = 0. This latter result can
also be seen from the fact that rt−1 occurred before time t and at does not depend on
any past information. Taking the square, then the expectation of Eq. (2.8), we obtain

Var(rt ) = φ2
1 Var(rt−1)+ σ 2

a ,

where σ 2
a is the variance of at and we make use of the fact that the covariance

between rt−1 and at is zero. Under the stationarity assumption, Var(rt ) = Var(rt−1),
so that

Var(rt ) = σ 2
a

1 − φ2
1

provided that φ2
1 < 1. The requirement of φ2

1 < 1 results from the fact that the
variance of a random variable is bounded and non-negative. Consequently, the weak
stationarity of an AR(1) model implies that −1 < φ1 < 1. Yet if −1 < φ1 < 1,
then by Eq. (2.9) and the independence of the {at } series, we can show that the mean
and variance of rt are finite. In addition, by the Cauchy–Schwartz inequality, all the
autocovariances of rt are finite. Therefore, the AR(1) model is weakly stationary. In
summary, the necessary and sufficient condition for the AR(1) model in Eq. (2.6) to
be weakly stationary is |φ1 | < 1.

Autocorrelation Function of an AR(1) Model
Multiplying Eq. (2.8) by at , using the independence between at and rt−1, and taking
expectation, we obtain

E[at (rt − µ)] = E[at (rt−1 − µ)] + E(a2
t ) = E(a2

t ) = σ 2
a ,
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where σ 2
a is the variance of at . Multiplying Eq. (2.8) by (rt−� − µ), taking expecta-

tion, and using the prior result, we have

γ� =
{
φ1γ1 + σ 2

a if � = 0
φ1γ�−1 if � > 0,

where we use γ� = γ−�. Consequently, for a weakly stationary AR(1) model in
Eq. (2.6), we have

Var(rt ) = γ0 = σ 2

1 − φ2
1

, and γ� = φ1γ�−1, for � > 0.

From the latter equation, the ACF of rt satisfies

ρ� = φ1ρ�−1, for � ≥ 0.

Because ρ0 = 1, we have ρ� = φ�1. This result says that the ACF of a weakly
stationary AR(1) series decays exponentially with rate φ1 and starting value ρ0 = 1.
For a positive φ1, the plot of ACF of an AR(1) model shows a nice exponential decay.
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Figure 2.3. The autocorrelation function of an AR(1) model: (a) for φ1 = 0.8, and (b) for
φ1 = −0.8.
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For a negative φ1, the plot consists of two alternating exponential decays with rate
φ2

1 . Figure 2.3 shows the ACF of two AR(1) models with φ1 = 0.8 and φ1 = −0.8.

AR(2) Model
An AR(2) model assumes the form

rt = φ0 + φ1rt−1 + φ2rt−2 + at . (2.10)

Using the same technique as that of the AR(1) case, we obtain

E(rt ) = µ = φ0

1 − φ1 − φ2

provided that φ1 + φ2 �= 1. Using φ0 = (1 − φ1 − φ2)µ, we can rewrite the AR(2)
model as

(rt − µ) = φ1(rt−1 − µ)+ φ2(rt−2 − µ)+ at .

Multiplying the prior equation by (rt−� − µ), we have

(rt−�−µ)(rt −µ) = φ1(rt−�−µ)(rt−1−µ)+φ2(rt−�−µ)(rt−2−µ)+(rt−�−µ)at .

Taking expectation and using E[(rt−� − µ)at ] = 0 for � > 0, we obtain

γ� = φ1γ�−1 + φ2γ�−2, for � > 0.

This result is referred to as the moment equation of a stationary AR(2) model. Divid-
ing the previous equation by γ0, we have the property

ρ� = φ1ρ�−1 + φ2ρ�−2, for � > 0, (2.11)

for the ACF of rt . In particular, the lag-1 ACF satisfies

ρ1 = φ1ρ0 + φ2ρ−1 = φ1 + φ2ρ1.

Therefore, for a stationary AR(2) series rt , we have ρ0 = 1,

ρ1 = φ1

1 − φ2

ρ� = φ1ρ�−1 + φ2ρ�−2, � ≥ 2.

The result of Eq. (2.11) says that the ACF of a stationary AR(2) series satisfies the
second order difference equation

(1 − φ1 B − φ2 B2)ρ� = 0,
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where B is called the back-shift operator such that Bρ� = ρ�−1. This difference
equation determines the properties of the ACF of a stationary AR(2) time series. It
also determines the behavior of the forecasts of rt . In the time series literature, some
people use the notation L instead of B for the back-shift operator. Here L stands for
lag operator. For instance, Lrt = rt−1 and Lψk = ψk−1.

Corresponding to the prior difference equation, there is a second order polynomial
equation

x2 − φ1x − φ2 = 0.

Solutions of this equation are the characteristic roots of the AR(2) model, and they
are

x =
φ1 ±

√
φ2

1 + 4φ2

2
.

Denote the two characteristic roots by ω1 and ω2. If both ωi are real valued, then the
second order difference equation of the model can be factored as (1−w1 B)(1−w2 B)
and the AR(2) model can be regarded as an AR(1) model operates on top of another
AR(1) model. The ACF of rt is then a mixture of two exponential decays. Yet if φ2

1 +
4φ2 < 0, then ω1 and ω2 are complex numbers (called a complex conjugate pair),
and the plot of ACF of rt would show a picture of damping sine and cosine waves.
In business and economic applications, complex characteristic roots are important.
They give rise to the behavior of business cycles. It is then common for economic
time series models to have complex-valued characteristic roots. For an AR(2) model
in Eq. (2.10) with a pair of complex characteristic roots, the average length of the
stochastic cycles is

k = 360◦

cos−1[φ1/(2
√−φ2)] ,

where the cosine inverse is stated in degrees.
Figure 2.4 shows the ACF of four stationary AR(2) models. Part (b) is the ACF of

the AR(2) model (1−0.6B+0.4B2)rt = at . Because φ2
1+4φ2 = 0.36+4×(−0.4) =

−1.24 < 0, this particular AR(2) model contains two complex characteristic roots,
and hence its ACF exhibits damping sine and cosine waves. The other three AR(2)
models have real-valued characteristic roots. Their ACFs decay exponentially.

Example 2.1. As an illustration, consider the quarterly growth rate of U.S.
real gross national product (GNP), seasonally adjusted, from the second quarter of
1947 to the first quarter of 1991. This series is used in Chapter 4 as an example of
nonlinear economic time series. Here we simply employ an AR(3) model for the
data. Denoting the growth rate by rt , we can use the model building procedure of the
next subsection to estimate the model. The fitted model is
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Figure 2.4. The autocorrelation function of an AR(2) model: (a) φ1 = 1.2 and φ2 = −0.35,
(b) φ1 = 0.6 and φ2 = −0.4, (c) φ1 = 0.2 and φ2 = 0.35, (d) φ1 = −0.2 and φ2 = 0.35.

rt = 0.0047 + 0.35rt−1 + 0.18rt−2 − 0.14rt−3 + at , σ̂a = 0.0098. (2.12)

Rewriting the model as

rt − 0.35rt−1 − 0.18rt−2 + 0.14rt−3 = 0.0047 + at ,

we obtain a corresponding third-order difference equation

(1 − 0.35B − 0.18B2 + 0.14B3) = 0,

which can be factored as

(1 + 0.52B)(1 − 0.87B + 0.27B2) = 0.

The first factor (1 + 0.52B) shows an exponentially decaying feature of the GNP
growth rate. Focusing on the second-order factor 1 − 0.87B − (−0.27)B2 = 0, we
have φ2

1 + 4φ2 = 0.872 + 4(−0.27) = −0.3231 < 0. Therefore, the second factor of
the AR(3) model confirms the existence of stochastic business cycles in the quarterly
growth rate of U.S. real GNP. This is reasonable as the U.S. economy went through
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expansion and contraction periods. The average length of the stochastic cycles is
approximately

k = 360◦

cos−1[φ1/(2
√−φ2)] = 10.83 quarters,

which is about 3 years. If one uses a nonlinear model to separate U.S. economy into
“expansion” and “contraction” periods, the data show that the average duration of
contraction periods is about three quarters and that of expansion periods is about
3 years; see the analysis in Chapter 4. The average duration of 10.83 quarters is a
compromise between the two separate durations. The periodic feature obtained here
is common among growth rates of national economies. For example, similar features
can be found for OECD countries.

Stationarity
The stationarity condition of an AR(2) time series is that the absolute values of its
two characteristic roots are less one or, equivalently, its two characteristic roots are
less than one in modulus. Under the prior condition, the recursive equation in (2.11)
ensures that the ACF of the model converges to zero as the lag � increases. This
convergence property is a necessary condition for a stationary time series. In fact,
the condition also applies to the AR(1) model where the polynomial equation is
x − φ1 = 0. The characteristic root is x = φ1, which must be less than 1 in modulus
for rt to be stationary. As shown before, ρ� = φ�1 for a stationary AR(1) model. The
condition ensures that ρ� → 0 as � → ∞.

AR(p) Model
The results of AR(1) and AR(2) models can readily be generalized to the general
AR(p) model in Eq. (2.7). The mean of a stationary series is

E(rt ) = φ0

1 − φ1 − · · · − φp

provided that the denominator is not zero. The associated polynomial equation of the
model is

x p − φ1x p−1 − φ2x p−2 − · · · − φp = 0,

which is referred to as the characteristic equation of the model. If all the characteris-
tic roots of this equation are less than one in modulus, then the series rt is stationary.
For a stationary AR(p) series, the ACF satisfies the difference equation

(1 − φ1 B − φ2 B2 − · · · − φp B p)ρ� = 0, for � > 0.

The plot of ACF of a stationary AR(p) model would then show a mixture of damp-
ing sine and cosine patterns and exponential decays depending on the nature of its
characteristic roots.
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2.4.2 Identifying AR Models in Practice

In application, the order p of an AR time series is unknown. It must be specified
empirically. This is referred to as the order determination of AR models, and it
has been extensively studied in the time series literature. Two general approaches
are available for determining the value of p. The first approach is to use the partial
autocorrelation function, and the second approach uses some information criterion
function.

Partial Autocorrelation Function (PACF)
The PACF of a time series is a function of its ACF and is a useful tool for determining
the order p of an AR model. A simple, yet effective way to introduce PACF is to
consider the following AR models in consecutive orders:

rt = φ0,1 + φ1,1rt−1 + e1t ,

rt = φ0,2 + φ1,2rt−1 + φ2,2rt−2 + e2t ,

rt = φ0,3 + φ1,3rt−1 + φ2,3rt−2 + φ3,3rt−3 + e3t ,

rt = φ0,4 + φ1,4rt−1 + φ2,4rt−2 + φ3,4rt−3 + φ4,4rt−4 + e4t ,

...
...

where φ0, j , φi, j , and {e jt } are, respectively, the constant term, the coefficient of rt−i ,
and the error term of an AR( j) model. These models are in the form of a multiple
linear regression and can be estimated by the least squares method. As a matter of
fact, they are arranged in a sequential order that enables us to apply the idea of partial
F test in multiple linear regression analysis. The estimate φ̂1,1 of the first equation is
called the lag-1 sample PACF of rt . The estimate φ̂2,2 of the second equation is the
lag-2 sample PACF of rt . The estimate φ̂3,3 of the third equation is the lag-3 sample
PACF of rt , and so on.

From the definition, the lag-2 PACF φ̂2,2 shows the added contribution of rt−2
to rt over the AR(1) model rt = φ0 + φ1rt−1 + e1t . The lag-3 PACF shows the
added contribution of rt−3 to rt over an AR(2) model, and so on. Therefore, for an
AR(p) model, the lag-p sample PACF should not be zero, but φ̂ j, j should be close
to zero for all j > p. We make use of this property to determine the order p. Indeed,
under some regularity conditions, it can be shown that the sample PACF of an AR(p)
process has the following properties:

• φ̂p,p converges to φp as the sample size T goes to infinity.

• φ̂�,� converges to zero for all � > p.

• The asymptotic variance of φ̂�,� is 1/T for � > p.

These results say that, for an AR(p) series, the sample PACF cuts off at lag p.
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Table 2.1. Sample Partial Autocorrelation Function and Akaike Information Criterion
for the Monthly Simple Returns of CRSP Value-Weighted Index from January 1926 to
December 1997.

p 1 2 3 4 5

PACF 0.11 -0.02 −0.12 0.04 0.07

AIC −5.807 −5.805 −5.817 −5.816 −5.819

p 6 7 8 9 10

PACF −0.06 0.02 0.06 0.06 −0.01

AIC −5.821 −5.819 −5.820 −5.821 −5.818

As an example, consider the monthly simple returns of CRSP value-weighted
index from January 1926 to December 1997. Table 2.1 gives the first 10 lags of
sample PACF of the series. With T = 864, the asymptotic standard error of the
sample PACF is approximately 0.03. Therefore, using the 5% significant level, we
identify an AR(3) or AR(5) model for the data (i.e., p = 3 or 5).

Information Criteria
There are several information criteria available to determine the order p of an AR
process. All of them are likelihood based. For example, the well-known Akaike Infor-
mation Criterion (Akaike, 1973) is defined as

AI C = −2

T
ln(likelihood)+ 2

T
× (number of parameters), (2.13)

where the likelihood function is evaluated at the maximum likelihood estimates and
T is the sample size. For a Gaussian AR(�) model, AIC reduces to

AIC(�) = ln(σ̂ 2
� )+ 2�

T
,

where σ̂ 2
� is the maximum likelihood estimate of σ 2

a , which is the variance of at ,
and T is the sample size; see Eq. (1.18). In practice, one computes AIC(�) for
� = 0, . . . , P , where P is a prespecified positive integer and selects the order k
that has the minimum AIC value. The second term of the AIC in Eq. (2.13) is called
the penalty function of the criterion because it penalizes a candidate model by the
number of parameters used. Different penalty functions result in different informa-
tion criteria.

Table 2.1 also gives the AIC for p = 1, . . . , 10. The AIC values are close to each
other with minimum −5.821 occurring at p = 6 and 9, suggesting that an AR(6)
model is preferred by the criterion. This example shows that different approaches
for order determination may result in different choices of p. There is no evidence
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to suggest that one approach outperforms the other in a real application. Substantive
information of the problem under study and simplicity are two factors that also play
an important role in choosing an AR model for a given time series.

Parameter Estimation
For a specified AR(p) model in Eq. (2.7), the conditional least squares method,
which starts with the (p + 1)th observation, is often used to estimate the parame-
ters. Specifically, conditioning on the first p observations, we have

rt = φ0 + φ1rt−1 + · · · + φprt−p + at , t = p + 1, . . . , T,

which can be estimated by the least squares method. Denote the estimate of φi by φ̂i .
The fitted model is

r̂t = φ̂0 + φ̂1rt−1 + · · · + φ̂prt−p

and the associated residual is

ât = rt − r̂t .

The series {ât } is called the residual series, from which we obtain

σ̂ 2
a =

∑T
t=p+1 â2

t

T − 2p − 1
.

For illustration, consider an AR(3) model for the monthly simple returns of the value-
weighted index in Table 2.1. The fitted model is

rt = 0.0103 + 0.104rt−1 − 0.010rt−2 − 0.120rt−3 + ât , σ̂a = 0.054.

The standard errors of the coefficients are 0.002, 0.034, 0.034, and 0.034, respec-
tively. Except for the lag-2 coefficient, all parameters are statistically significant at
the 1% level.

For this example, the AR coefficients of the fitted model are small, indicating that
the serial dependence of the series is weak, even though it is statistically significant
at the 1% level. The significance of φ̂0 of the entertained model implies that the
expected mean return of the series is positive. In fact, µ̂ = 0.0103/(1 − 0.104 +
0.010 + 0.120) = 0.01, which is small, but has an important long-term implication.
It implies that the long-term return of the index can be substantial. Using the multi-
period simple return defined in Chapter 1, the average annual simple gross return is
[∏864

t=1(1 + Rt )]12/864 − 1 ≈ 0.1053. In other words, the monthly simple returns of
the CRSP value-weighted index grew about 10.53% per annum from 1926 to 1997,
supporting the common belief that equity market performs well in the long term. A
one-dollar investment at the beginning of 1926 would be worth about $1350 at the
end of 1997.
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Model Checking
A fitted model must be examined carefully to check for possible model inadequacy.
If the model is adequate, then the residual series should behave as a white noise.
The ACF and the Ljung–Box statistics in Eq. (2.3) of the residuals can be used to
check the closeness of ât to a white noise. For an AR(p) model, the Ljung–Box
statistic Q(m) follows asymptotically a chi-squared distribution with m − p degrees
of freedom. Here the number of degrees of freedom is modified to signify that p
AR coefficients are estimated. If a fitted model is found to be inadequate, it must be
refined.

Consider the residual series of the fitted AR(3) model for the monthly value-
weighted simple returns. We have Q(10) = 15.8 with p value 0.027 based on
its asymptotic chi-squared distribution with 7 degrees of freedom. Thus, the null
hypothesis of no residual serial correlation in the first 10 lags is rejected at the 5%
level, but not at the 1% level. If the model is refined to an AR(5) model, then we have

rt = 0.0092 + 0.107rt−1 − 0.001rt−2 − 0.123rt−3 + 0.028rt−4 + 0.069rt−5 + ât ,

with σ̂a = 0.054. The AR coefficients at lags 1, 3, and 5 are significant at the 5%
level. The Ljung–Box statistics give Q(10) = 11.2 with p value 0.048. This model
shows some improvements and appears to be marginally adequate at the 5% signif-
icance level. The mean of rt based on the refined model is also very close to 0.01,
showing that the two models have similar long-term implications.

2.4.3 Forecasting

Forecasting is an important application of time series analysis. For the AR(p)model
in Eq. (2.7), suppose that we are at the time index h and are interested in forecasting
rh+�, where � ≥ 1. The time index h is called the forecast origin and the positive
integer � is the forecast horizon. Let r̂h(�) be the forecast of rh+� using the minimum
squared error loss function. In other words, the forecast r̂k(�) is chosen such that

E[rh+� − r̂h(�)]2 ≤ min
g

E(rh+� − g)2,

where g is a function of the information available at time h (inclusive). We referred
to r̂h(�) as the �-step ahead forecast of rt at the forecast origin h.

1-Step Ahead Forecast
From the AR(p) model, we have

rh+1 = φ0 + φ1rh + · · · + φprh+1−p + ah+1.

Under the minimum squared error loss function, the point forecast of rh+1 given the
model and observations up to time h is the conditional expectation
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r̂h(1) = E(rh+1 | rh, rh−1, . . .) = φ0 +
p∑

i=1

φi rh+1−i

and the associated forecast error is

eh(1) = rh+1 − r̂h(1) = ah+1.

Consequently, the variance of the 1-step ahead forecast error is Var[eh(1)] =
Var(ah+1) = σ 2

a . If at is normally distributed, then a 95% 1-step ahead interval
forecast of rh+1 is r̂h(1)± 1.96 × σa . For the linear model in Eq. (2.4), at+1 is also
the 1-step ahead forecast error at the forecast origin t . In the econometric literature,
at+1 is referred to as the shock to the series at time t + 1.

In practice, estimated parameters are often used to compute point and interval
forecasts. This results in a conditional forecast because such a forecast does not
take into consideration the uncertainty in the parameter estimates. In theory, one can
consider parameter uncertainty in forecasting, but it is much more involved. When
the sample size used in estimation is sufficiently large, then the conditional forecast
is close to the unconditional one.

2-Step Ahead Forecast
Next consider the forecast of rh+2 at the forecast origin h. From the AR(p) model,
we have

rh+2 = φ0 + φ1rh+1 + · · · + φprh+2−p + ah+2.

Taking conditional expectation, we have

r̂h(2) = E(rh+2 | rh, rh−1, . . .) = φ0 + φ1r̂h(1)+ φ2rh + · · · + φprh+2−p

and the associated forecast error

eh(2) = rh+2 − r̂h(2) = φ1[rh+1 − r̂h(1)] + ah+2 = ah+2 + φ1ah+1.

The variance of the forecast error is Var[eh(2)] = (1 + φ2
1)σ

2
a . Interval forecasts

of rh+2 can be computed in the same way as those for rh+1. It is interesting to see
that Var[eh(2)] ≥ Var[eh(1)], meaning that as the forecast horizon increases the
uncertainty in forecast also increases. This is in agreement with common sense that
we are more uncertain about rh+2 than rh+1 at the time index h for a linear time
series.

Multistep Ahead Forecast
In general, we have

rh+� = φ0 + φ1rh+�−1 + · · · + φprh+�−p + ah+�.
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The �-step ahead forecast based on the minimum squared error loss function is the
conditional expectation of rh+� given {rh−i }∞i=0, which can be obtained as

r̂h(�) = φ0 +
p∑

i=1

φi r̂h(�− i),

where it is understood that r̂h(i) = rh+i if i ≤ 0. This forecast can be computed
recursively using forecasts r̂h(i) for i = 1, . . . , � − 1. The �-step ahead forecast
error is eh(�) = rh+� − r̂h(�). It can be shown that for a stationary AR(p) model,
r̂h(�) converges to E(rt ) as � → ∞, meaning that for such a series long-term point
forecast approaches its unconditional mean. This property is referred to as the mean
reversion in the finance literature. The variance of the forecast error then approaches
the unconditional variance of rt .

Table 2.2 contains the 1-step to 6-step ahead forecasts and the standard errors of
the associated forecast errors at the forecast origin 858 for the monthly simple return
of the value-weight index using an AR(5) model that was re-estimated using the
first 858 observations. The actual returns are also given. Because of the weak serial
dependence in the series, the forecasts and standard deviations of forecast errors
converge to the sample mean and standard deviation of the data quickly. For the
first 858 observations, the sample mean and standard error are 0.0098 and 0.0550,
respectively.

Figure 2.5 shows the 1- to 6-step ahead out-of-sample forecasts and their two
standard-error limits for the monthly log returns of value-weighted index. As in
Table 2.2, the following AR(5) model

rt = 0.0075 + 0.103rt−1 + 0.002rt−2 − 0.114rt−3 + 0.032rt−4 + 0.084rt−5 + at ,

where σ̂a = 0.054, is built and used to produce the forecasts. For this example, the
forecasts are close to the actual values, and the actual values are all within the 95%
interval forecasts. For this particular series, the AR models for monthly simple and
log returns are close.

Remark: The prior time series analysis was carried out using the SCA package.
The commands used are given in Appendix A.

Table 2.2. Multistep Ahead Forecasts of an AR(5) Model for the Monthly Simple
Returns of CRSP Value-Weighted Index. The Forecast Origin Is 858.

Step 1 2 3 4 5 6

Forecast 0.0071 −0.0008 0.0086 0.0154 0.0141 0.0100

Std. Error 0.0541 0.0545 0.0545 0.0549 0.0549 0.0550

Actual 0.0762 −0.0365 0.0580 −0.0341 0.0311 0.0183
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Figure 2.5. Plot of 1- to 6-step ahead out-of-sample forecasts for the monthly log returns of
the CRSP value-weighted index. The forecast origin is t = 858. The forecasts are denoted
by “o” and the actual observations by a dot. The two dashed lines denote two standard-error
limits of the forecasts.

2.5 SIMPLE MOVING-AVERAGE MODELS

We now turn to another class of simple models that are also useful in modeling return
series in finance. These models are called moving-average (MA) models. There are
several ways to introduce MA models. One approach is to treat the model as a simple
extension of white noise series. Another approach is to treat the model as an infinite-
order AR model with some parameter constraints. We adopt the second approach. As
is shown in Chapter 5, the bid-ask bounce in stock trading may introduce an MA(1)
structure in a return series.

There is no particular reason, but simplicity, to assume a priori that the order of
an AR model is finite. We may entertain, at least in theory, an AR model with infinite
order as

rt = φ0 + φ1rt−1 + φ2rt−2 + · · · + at .

However, such an AR model is not realistic because it has infinite many parameters.
One way to make the model practical is to assume that the coefficients φi s satisfy
some constraints so that they are determined by a finite number of parameters. A
special case of this idea is

rt = φ0 − θ1rt−1 − θ2
1 rt−2 − θ3

1 rt−3 − · · · + at , (2.14)
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where the coefficients depend on a single parameter θ1 via φi = −θ i
1 for i ≥ 1. For

the model in Eq. (2.14) to be stationary, θ1 must be less than one in absolute value;
otherwise, θ i

1 and the series will explode. Because | θ1 | < 1, we have θ i
1 → 0 as

i → ∞. Thus, the contribution of rt−i to rt decays exponentially as i increases. This
is reasonable as the dependence of a stationary series rt on its lagged value rt−i , if
any, should decay over time.

The model in Eq. (2.14) can be rewritten in a rather compact form. To see this,
rewrite the model as

rt + θ1rt−1 + θ2
1 rt−2 + · · · = φ0 + at . (2.15)

The model for rt−1 is then

rt−1 + θ1rt−2 + θ2
1 rt−3 + · · · = φ0 + at−1. (2.16)

Multiplying Eq. (2.16) by θ1 and subtracting the result from Eq. (2.15), we obtain

rt = φ0(1 − θ1)+ at − θ1at−1,

which says that except for the constant term rt is a weighted average of shocks at

and at−1. Therefore, the model is called an MA model of order 1 or MA(1) model
for short. The general form of an MA(1) model is

rt = c0 + at − θ1at−1, (2.17)

where c0 is a constant and {at } is a white noise series. Similarly, an MA(2) model is
in the form

rt = c0 + at − θ1at−1 − θ2at−2 (2.18)

and an MA(q) model is

rt = c0 + at − θ1at−1 − · · · − θqat−q , (2.19)

where q > 0.

2.5.1 Properties of MA Models

Again, we focus on the simple MA(1) and MA(2) models. The results of MA(q)
models can easily be obtained by the same techniques.

Stationarity
MA models are always weakly stationary because they are finite linear combinations
of a white noise sequence for which the first two moments are time-invariant. For
example, consider the MA(1) model in Eq. (2.17). Taking expectation of the model,
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we have

E(rt ) = c0,

which is time-invariant. Taking the variance of Eq. (2.17), we have

Var(rt ) = σ 2
a + θ2

1σ
2
a = (1 + θ2

1 )σ
2
a ,

where we use the fact that at and at−1 are uncorrelated. Again, Var(rt ) is time-
invariant. The prior discussion applies to general MA(q) models, and we obtain two
general properties. First, the constant term of an MA model is the mean of the series
[i.e., E(rt ) = c0]. Second, the variance of an MA(q) model is

Var(rt ) = (1 + θ2
1 + θ2

2 + · · · + θ2
q )σ

2
a .

Autocorrelation Function
Assume for simplicity that c0 = 0 for an MA(1) model. Multiplying the model by
rt−�, we have

rt−�rt = rt−�at − θ1rt−�at−1.

Taking expectation, we obtain

γ1 = −θ1σ
2
a , and γ� = 0, for � > 1.

Using the prior result and the fact that Var(rt ) = (1 + θ2
1 )σ

2
a , we have

ρ0 = 1, ρ1 = −θ1

1 + θ2
1

, ρ� = 0, for � > 1.

Thus, for an MA(1) model, the lag-1 ACF is not zero, but all higher order ACFs are
zero. In other words, the ACF of an MA(1) model cuts off at lag 1. For the MA(2)
model in Eq. (2.18), the autocorrelation coefficients are

ρ1 = −θ1 + θ1θ2

1 + θ2
1 + θ2

2

, ρ2 = −θ2

1 + θ2
1 + θ2

2

, ρ� = 0, for � > 2.

Here the ACF cuts off at lag 2. This property generalizes to other MA models. For
an MA(q) model, the lag-q ACF is not zero, but ρ� = 0 for � > q. Consequently,
an MA(q) series is only linearly related to its first q lagged values and hence is a
“finite-memory” model.

2.5.2 Identifying MA Order

The ACF is useful in identifying the order of an MA model. For a time series rt with
ACF ρ�, if ρq �= 0, but ρ� = 0 for � > q, then rt follows an MA(q) model.
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Figure 2.6. Time plot and sample autocorrelation function of the monthly simple returns of
the CRSP equal-weighted index from January 1926 to December 1997.

Figure 2.6 shows the time plot of monthly simple returns of the CRSP equal-
weighted index from January 1926 to December 1997 and the sample ACF of the
series. The two dashed lines shown on the ACF plot denote the two standard-error
limits. It is seen that the series has significant ACF at lags 1, 3, and 9. There are some
marginally significant ACF at higher lags, but we do not consider them here. Based
on the sample ACF, the following MA(9) model

rt = c0 + at − θ1at−1 − θ3at−3 − θ9at−9

is identified for the series.

2.5.3 Estimation

Maximum likelihood estimation is commonly used to estimate MA models. There
are two approaches for evaluating the likelihood function of an MA model. The first
approach assumes that the initial shocks (i.e., at for t ≤ 0) are zero. As such, the
shocks needed in likelihood function calculation are obtained recursively from the
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model, starting with a1 = r1 − c0 and a2 = r2 − c0 + θ1a1. This approach is referred
to as the conditional likelihood method and the resulting estimates are the condi-
tional maximum likelihood estimates. The second approach treats the initial shocks
at , t ≤ 0, as additional parameters of the model and estimate them jointly with other
parameters. This approach is referred to as the exact likelihood method. The exact
likelihood estimates are preferred over the conditional ones, but they require more
intensive computation. If the sample size is large, then the two types of maximum
likelihood estimates are close to each other. For details of conditional and exact like-
lihood estimates of MA models, readers are referred to Box, Jenkins, and Reinsel
(1994) or Chapter 8.

For illustration, consider the monthly simple return series of the CRSP equal-
weighted index and the specified MA(9) model. The conditional maximum likeli-
hood method produces the fitted model

rt = 0.0132+at +0.1775at−1 −0.1324at−3 +0.1349at−9, σ̂a = 0.0727, (2.20)

where standard errors of the coefficient estimates are 0.0030, 0.0327, 0.0328, and
0.0328, respectively. The Ljung–Box statistics of the residuals give Q(10) = 11.4
with p value 0.122, which is based on an asymptotic chi-squared distribution with
7 degrees of freedom. The model appears to be adequate except for a few marginal
residual ACFs at lags 14, 17, and 20. The exact maximum likelihood method pro-
duces the fitted model

rt = 0.0132+at +0.1806at−1 −0.1315at−3 +0.1379at−9, σ̂a = 0.0727, (2.21)

where standard errors of the estimates are 0.0029, 0.0329, 0.0330, and 0.0328,
respectively. The Ljung–Box statistics of the residuals give Q(10) = 11.6 with p
value 0.116. This fitted model is also adequate. Comparing models (2.20) and (2.21),
we see that for this particular instance, the difference between the conditional and
exact likelihood methods is negligible.

2.5.4 Forecasting Using MA Models

Forecasts of an MA model can easily be obtained. Because the model has finite
memory, its point forecasts go to the mean of the series quickly. To see this, assume
that the forecast origin is h. For the 1-step ahead forecast of an MA(1) process, the
model says

rh+1 = c0 + ah+1 − θ1ah .

Taking the conditional expectation, we have

r̂h(1) = E(rh+1 | rh, rh−1, . . .) = c0 − θ1ah

eh(1) = rh+1 − r̂h(1) = ah+1.
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The variance of the 1-step ahead forecast error is Var[eh(1)] = σ 2
a . In practice, the

quantity ah can be obtained in several ways. For instance, assume that a0 = 0, then
a1 = r1 − c0, and we can compute at for 2 ≤ t ≤ h recursively by using at =
rt − c0 + θ1at−1. Alternatively, it can be computed by using the AR representation
of the MA(1) model; see Subsection 2.6.5.

For the 2-step ahead forecast from the equation

rh+2 = c0 + ah+2 − θ1ah+1,

we have

r̂h(2) = E(rh+2 | rh, rh−1, . . .) = c0,

eh(2) = rh+2 − r̂h(2) = ah+2 − θ1ah+1.

The variance of the forecast error is Var[eh(2)] = (1 + θ2
1 )σ

2
a , which is the variance

of the model and is greater than or equal to that of the 1-step ahead forecast error.
The prior result shows that for an MA(1) model the 2-step ahead forecast of the
series is simply the unconditional mean of the model. This is true for any forecast
origin h. More generally, r̂h(�) = c0 for � ≥ 2. In summary, for an MA(1) model,
the 1-step ahead point forecast at the forecast origin h is c0 − θ1ah and the multistep
ahead forecasts are c0, which is the unconditional mean of the model. If we plot the
forecasts r̂h(�) versus �, we see that the forecasts form a horizontal line after one
step.

Similarly, for an MA(2) model, we have

rh+� = c0 + ah+� − θ1ah+�−1 − θ2ah+�−2,

from which we obtain

r̂h(1) = c0 − θ1ah − θ2ah−1

r̂h(2) = c0 − θ2ah

r̂h(�) = c0, for � > 2.

Thus, the multistep ahead forecasts of an MA(2) model go to the mean of the series
after two steps. The variances of forecast errors go to the variance of the series after
two steps. In general, for an MA(q) model, multistep ahead forecasts go to the mean
after the first q steps.

Table 2.3 gives some forecasts of the MA(9) model in Eq. (2.20) for the monthly
simple returns of the equal-weighted index at the forecast origin h = 854. The
sample mean and standard error of the first 854 observations of the series are 0.0131
and 0.0757, respectively. As expected, the table shows that (a) the 10-step ahead
forecast is the sample mean, and (b) the standard deviations of the forecast errors
converge to the standard deviation of the series as the forecast horizon increases.
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Table 2.3. Forecast Performance of an MA(9) Model for the Monthly Simple Returns
of the CRSP Equal-Weighted Index. The Forecast Origin is h = 854. The Model Is
Estimated by the Conditional Maximum Likelihood Method.

Step 1 2 3 4 5

Fcst .0026 −.0016 .0239 .0133 .0072

S. Er .0730 .0741 .0741 .0747 .0747
Actu. −.0479 −.0213 .0851 .0442 .0486

Step 6 7 8 9 10

Fcst .0163 .0106 .0186 .0087 .0131

S. Er .0747 .0747 .0747 .0747 .0754

Actu. .0271 .0814 −.0257 −.0198 −.0226

Summary
A brief summary of AR and MA models is in order. We have discussed the following
properties:

• for MA models, ACF is useful in specifying the order because ACF cuts off at
lag q for an MA(q) series;

• for AR models, PACF is useful in order determination because PACF cuts off
at lag p for an AR(p) process;

• an MA series is always stationary, but for an AR series to be stationary, all of
its characteristic roots must be less than 1 in modulus;

• for a stationary series, the multistep ahead forecasts converge to the mean of the
series and the variances of forecast errors converge to the variance of the series.

2.6 SIMPLE ARMA MODELS

In some applications, the AR or MA models discussed in the previous sections
become cumbersome because one may need a high-order model with many param-
eters to adequately describe the dynamic structure of the data. To overcome this
difficulty, the autoregressive moving-average (ARMA) models are introduced; see
Box, Jenkins, and Reinsel (1994). Basically, an ARMA model combines the ideas
of AR and MA models into a compact form so that the number of parameters used
is kept small. For the return series in finance, the chance of using ARMA models is
low. However, the concept of ARMA models is highly relevant in volatility model-
ing. As a matter of fact, the generalized autoregressive conditional heteroscedastic
(GARCH) model can be regarded as an ARMA model, albeit nonstandard, for the a2

t
series; see Chapter 3 for details. In this section, we study the simplest ARMA(1, 1)
model.
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A time series rt follows an ARMA(1, 1) model if it satisfies

rt − φ1rt−1 = φ0 + at − θ1at−1, (2.22)

where {at } is a white noise series. The left-hand side of Eq. (2.22) is the AR com-
ponent of the model and the right-hand side gives the MA component. The constant
term is φ0. For this model to be meaningful, we need φ1 �= θ1; otherwise, there is a
cancellation in the equation and the process reduces to a white noise series.

2.6.1 Properties of ARMA(1, 1) Models

Properties of ARMA(1, 1)models are generalizations of those of AR(1) models with
some minor modifications to handle the impact of the MA(1) component. We start
with the stationarity condition. Taking the expectation of Eq. (2.22), we have

E(rt )− φ1 E(rt−1) = φ0 + E(at )− θ1 E(at−1).

Because E(ai ) = 0 for all i , the mean of rt is

E(rt ) = µ = φ0

1 − φ1

provided that the series is weakly stationary. This result is exactly the same as that
of the AR(1) model in Eq. (2.6).

Next, assuming for simplicity that φ0 = 0, we consider the autocovariance func-
tion of rt . First, multiplying the model by at and taking expectation, we have

E(rtat ) = E(a2
t )− θ1 E(at at−1) = E(a2

t ) = σ 2
a . (2.23)

Rewriting the model as

rt = φ1rt−1 + at − θ1at−1

and taking the variance of the prior equation, we have

Var(rt ) = φ2
1 Var(rt−1)+ σ 2

a + θ2
1σ

2
a − 2φ1θ1 E(rt−1at−1).

Here we make use of the fact that rt−1 and at are uncorrelated. Using Eq. (2.23), we
obtain

Var(rt )− φ2
1 Var(rt−1) = (1 − 2φ1θ1 + θ2

1 )σ
2
a .

Therefore, if the series rt is weakly stationary, then Var(rt ) = Var(rt−1) and we have

Var(rt ) = (1 − 2φ1θ1 + θ2
1 )σ

2
a

1 − φ2
1

.
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Because the variance is positive, we need φ2
1 < 1 (i.e., |φ1 | < 1). Again, this is

precisely the same stationarity condition as that of the AR(1) model.
To obtain the autocovariance function of rt , we assume φ0 = 0 and multiply the

model in Eq. (2.22) by rt−� to obtain

rtrt−� − φ1rt−1rt−� = atrt−� − θ1at−1rt−�.

For � = 1, taking expectation and using Eq. (2.23) for t − 1, we have

γ1 − φ1γ0 = −θ1σ
2
a ,

where γ� = Cov(rt , rt−�). This result is different from that of the AR(1) case for
which γ1 − φ1γ0 = 0. However, for � = 2 and taking expectation, we have

γ2 − φ1γ1 = 0,

which is identical to that of the AR(1) case. In fact, the same technique yields

γ� − φ1γ�−1 = 0, for � > 1. (2.24)

In terms of ACF, the previous results show that for a stationary ARMA(1, 1) model

ρ1 = φ1 − θ1σ
2
a

γ0
, ρ� = φ1ρ�−1, for � > 1.

Thus, the ACF of an ARMA(1, 1) model behaves very much like that of an AR(1)
model except that the exponential decay starts with lag 2. Consequently, the ACF of
an ARMA(1, 1) model does not cut off at any finite lag.

Turning to PACF, one can show that the PACF of an ARMA(1, 1)model does not
cut off at any finite lag either. It behaves very much like that of an MA(1) model
except that the exponential decay starts with lag 2 instead of lag 1.

In summary, the stationarity condition of an ARMA(1, 1) model is the same as
that of an AR(1) model, and the ACF of an ARMA(1, 1) exhibits a similar pattern
like that of an AR(1) model except that the pattern starts at lag 2.

2.6.2 General ARMA Models

A general ARMA(p, q) model is in the form

rt = φ0 +
p∑

i=1

φi rt−i + at −
q∑

i=1

θi at−i ,

where {at } is a white noise series and p and q are non-negative integers. The AR
and MA models are special cases of the ARMA(p, q) model. Using the back-shift
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operator, the model can be written as

(1 − φ1 B − · · · − φp B p)rt = φ0 + (1 − θ1 B − · · · − θq Bq)at . (2.25)

The polynomial 1−φ1 B −· · ·−φp B p is the AR polynomial of the model. Similarly,
1−θ1 B−· · ·−θq Bq is the MA polynomial. We require that there are no common fac-
tors between the AR and MA polynomials; otherwise the order (p, q) of the model
can be reduced. Like a pure AR model, the AR polynomial introduces the character-
istic equation of an ARMA model. If all of the solutions of the characteristic equation
are less than 1 in absolute value, then the ARMA model is weakly stationary. In this
case, the unconditional mean of the model is E(rt ) = φ0/(1 − φ1 − · · · − φp).

2.6.3 Identifying ARMA Models

The ACF and PACF are not informative in determining the order of an ARMA model.
Tsay and Tiao (1984) propose a new approach that uses the extended autocorrelation
function (EACF) to specify the order of an ARMA process. The basic idea of EACF
is relatively simple. If we can obtain a consistent estimate of the AR component of an
ARMA model, then we can derive the MA component. From the derived MA series,
we can use ACF to identify the order of the MA component.

The derivation of EACF is relatively involved; see Tsay and Tiao (1984) for
details. Yet the function is easy to use. The output of EACF is a two-way table,
where the rows correspond to AR order p and the columns to MA order q. The the-
oretical version of EACF for an ARMA(1, 1) model is given in Table 2.4. The key
feature of the table is that it contains a triangle of “O” with the upper left vertex
located at the order (1, 1). This is the characteristic we use to identify the order of
an ARMA process. In general, for an ARMA(p, q) model, the triangle of “O” will
have its upper left vertex at the (p, q) position.

For illustration, consider the monthly log stock returns of the 3M Company from
February 1946 to December 1997. There are 623 observations. The return series
and its sample ACF are shown in Figure 2.7. The ACF indicates that there are no

Table 2.4. The Theoretical EACF Table for an ARMA(1, 1) Model, Where “X” Denotes
Nonzero, “O” Denotes Zero, and “*” Denotes Either Zero or Nonzero. This Latter Cat-
egory Does Not Play Any Role in Identifying the Order (1, 1).

MA

AR 0 1 2 3 4 5 6 7

0 X X X X X X X X
1 X O O O O O O O
2 * X O O O O O O
3 * * X O O O O O
4 * * * X O O O O
5 * * * * X O O O
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Figure 2.7. Time plot and sample autocorrelation function of the monthly log stock returns
of 3M Company from February 1946 to December 1997.

significant serial correlations in the data at the 5% level. Table 2.5 shows the sample
EACF and a corresponding simplified table for the series. The simplified table is
constructed by using the following notation:

1. “X” denotes that the absolute value of the corresponding EACF is greater than
or equal to 2/

√
T , which is twice of the asymptotic standard error of the EACF;

2. “O” denotes that the corresponding EACF is less than 2/
√

T in modulus.

The simplified table clearly exhibits a triangular pattern of “O” with its upper left
vertex at the order (p, q) = (0, 0). The only exception is a single “X” in the first
row, which corresponds to a sample EACF of 0.09 that is only slightly greater than
2/

√
623 = 0.08. Therefore, the EACF suggests that the monthly log returns of 3M

stock follow an ARMA(0, 0) model (i.e., a white noise series). This is in agreement
with the result suggested by the sample ACF in Figure 2.7.

Once an ARMA(p, q) model is specified, its parameters can be estimated by
either the conditional or exact likelihood method. In addition, the Ljung–Box statis-
tics of the residuals can be used to check the adequacy of a fitted model. If the model
is correctly specified, then Q(m) follows asymptotically a chi-squared distribution
with m − g degrees of freedom, where g denotes the number of parameters used in
the model.
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Table 2.5. Sample Extended Autocorrelation Function and a Simplified Table for the
Monthly Log Returns of 3M Stock from February 1946 to December 1997.

(a) Sample extended autocorrelation function

MA order: q

p 0 1 2 3 4 5 6 7 8 9 10 11 12

0 −.05 −.04 −.07 −.01 .02 .06 −.00 .02 −.01 −.06 .03 .09 .01
1 −.49 .01 −.06 −.03 −.00 .06 .01 .01 −.01 −.05 .02 .08 .02
2 −.45 −.18 −.05 .01 −.02 .06 .03 .02 −.01 −.00 .01 .05 .05
3 −.18 .15 .40 −.01 −.01 .05 −.00 .03 −.03 −.00 .00 .02 .05
4 .42 .04 .39 −.08 −.01 .01 −.01 .04 .02 .02 −.00 .01 .03
5 −.13 .24 .41 .07 .23 .01 .01 .05 −.03 .02 −.01 .00 .04
6 −.07 −.37 .06 .31 .20 −.09 .01 .06 −.03 .02 −.01 .00 .03

(b) Simplified EACF table

MA order: q

p 0 1 2 3 4 5 6 7 8 9 10 11 12

0 O O O O O O O O O O O X O
1 X O O O O O O O O O O O O
2 X X O O O O O O O O O O O
3 X X X O O O O O O O O O O
4 X O X O O O O O O O O O O
5 X X X O X O O O O O O O O
6 O X O X X O O O O O O O O

2.6.4 Forecasting Using an ARMA Model

Like the behavior of ACF, forecasts of an ARMA(p, q) model have similar char-
acteristics as those of an AR(p) model after adjusting for the impacts of the MA
component on the lower horizon forecasts. Denote the forecast origin by h. The 1-
step ahead forecast of rh+1 can be easily obtained from the model as

r̂h(1) = E(rh+1 | rh, rh−1, . . .) = φ0 +
p∑

i=1

φi rh+1−i −
q∑

i=1

θi ah+1−i ,

and the associated forecast error is eh(1) = rh+1 − r̂h(1) = ah+1. The variance of
1-step ahead forecast error is Var[eh(1)] = σ 2

a . For the �-step ahead forecast, we
have

r̂h(�) = E(rh+� | rh, rh−1, . . .) = φ0 +
p∑

i=1

φi r̂h(�− i)rh+�−i −
q∑

i=1

θi ah(�− i)
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where it is understood that r̂h(� − i) = rh+�−i if � − i ≤ 0 and ah(� − i) = 0 if
�− i > 0 and ah(�− i) = ah+�−i if �− i ≤ 0. Thus, the multistep ahead forecasts
of an ARMA model can be computed recursively. The associated forecast error is

eh(�) = rh+� − r̂h(�),

which can be computed easily via a formula to be given in the next subsection.

2.6.5 Three Model Representations for an ARMA Model

In this subsection, we briefly discuss three model representations for a stationary
ARMA(p, q)model. The three representations serve three different purposes. Know-
ing these representations can lead to a better understanding of the model. The first
representation is the ARMA(p, q) model in Eq. (2.25). This representation is com-
pact and useful in parameter estimation. It is also useful in computing recursively
multistep ahead forecasts of rt ; see the discussion of the last subsection.

For the other two representations, we use long division of two polynomials. Given
two polynomials φ(B) = 1−∑p

i=1 φi Bi and θ(B) = 1−∑q
i=1 θi Bi , we can obtain,

by long division, that

θ(B)

φ(B)
= 1 + ψ1 B + ψ2 B2 + · · · ≡ ψ(B) (2.26)

and
φ(B)

θ(B)
= 1 − π1 B − π2 B2 − · · · ≡ π(B). (2.27)

For instance, if φ(B) = 1 − φ1 B and θ(B) = 1 − θ1 B, then

ψ(B) = 1 − θ1 B

1 − φ1 B
= 1 + (φ1 − θ1)B + φ1(φ1 − θ1)B

2 + φ2
1(φ1 − θ1)B

3 + · · ·

π(B) = 1 − φ1 B

1 − θ1 B
= 1 − (φ1 − θ1)B − θ1(φ1 − θ1)B

2 − θ2
1 (φ1 − θ1)B

3 − · · · .

From the definition, ψ(B)π(B) = 1. Making use of the fact that Bc = c for any
constant (because the value of a constant is time-invariant), we have

φ0

θ(1)
= φ0

1 − θ1 − · · · − θq
and

φ0

φ(1)
= φ0

1 − φ1 − · · · − φp
.

AR Representation
Using the result of long division in Eq. (2.27), the ARMA(p, q)model can be written
as

rt = φ0

1 − θ1 − · · · − θq
+ π1rt−1 + π2rt−2 + π3rt−3 + · · · + at . (2.28)
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This representation shows the dependence of the current return rt on the past returns
rt−i , where i > 0. The coefficients {πi } are referred to as the π-weights of an ARMA
model. To show that the contribution of the lagged value rt−i to rt is diminishing as
i increases, the πi coefficient should decay to zero as i increases. An ARMA(p, q)
model that has this property is said to be invertible. For a pure AR model, θ(B) = 1
so that π(B) = φ(B), which is a finite-degree polynomial. Thus, πi = 0 for i >
p, and the model is invertible. For other ARMA models, a sufficient condition for
invertibility is that all the zeros of the polynomial θ(B) are greater than unity in
modulus. For example, consider the MA(1) model rt = (1 − θ1 B)at . The zero of the
first order polynomial 1− θ1 B is B = 1/θ1. Therefore, an MA(1) model is invertible
if | 1/θ1 | > 1. This is equivalent to | θ1 | < 1.

From the AR representation in Eq. (2.28), an invertible ARMA(p, q) series rt is a
linear combination of the current shock at and a weighted average of the past values.
The weights decay exponentially for more remote past values.

MA Representation
Again, using the result of long division in Eq. (2.26), an ARMA(p, q) model can
also be written as

rt = µ+ at + ψ1at−1 + ψ2at−2 + · · · = µ+ ψ(B)at , (2.29)

where µ = E(rt ) = φ0/(1 − φ1 − · · · − φp). This representation shows explicitly
the impact of the past shock at−i (i > 0) on the current return rt . The coefficients
{ψi } are referred to as the impulse response function of the ARMA model. For a
weakly stationary series, the ψi coefficients decay exponentially as i increases. This
is understandable as the effect of shock at−i on the return rt should diminish over
time. Thus, for a stationary ARMA model, the shock at−i does not have a permanent
impact on the series. If φ0 �= 0, then the MA representation has a constant term,
which is the mean of rt [i.e., φ0/(1 − φ1 − · · · − φp].

The MA representation in Eq. (2.29) is also useful in computing the variance of a
forecast error. At the forecast origin h, we have the shocks ah, ah−1, . . . . Therefore,
the �-step ahead point forecast is

r̂h(�) = µ+ ψ�ah + ψ�+1ah−1 + · · · , (2.30)

and the associated forecast error is

eh(�) = ah+� + ψ1ah+�−1 + · · · + ψ�−1ah+1.

Consequently, the variance of �-step ahead forecast error is

Var[eh(�)] = (1 + ψ2
1 + · · · + ψ2

�−1)σ
2
a , (2.31)

which, as expected, is a nondecreasing function of the forecast horizon �.
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Finally, the MA representation in Eq. (2.29) provides a simple proof of mean
reversion of a stationary time series. The stationarity implies that ψi approaches zero
as i → ∞. Therefore, by Eq. (2.30), we have r̂h(�) → µ as � → ∞. Because r̂h(�)

is the conditional expectation of rh+� at the forecast origin h, the result says that in
the long-term the return series is expected to approach its mean, that is, the series
is mean reverting. Furthermore, using the MA representation in Eq. (2.29), we have
Var(rt ) = (1 + ∑∞

i=1 ψ
2
i )σ

2
a . Consequently, by Eq. (2.31), we have Var[eh(�)] →

Var(rt ) as � → ∞. The speed by which r̂h(�) approaches µ determines the speed of
mean reverting.

2.7 UNIT-ROOT NONSTATIONARITY

So far we have focused on return series that are stationary. In some studies, interest
rates, foreign exchange rates, or the price series of an asset are of interest. These
series tend to be nonstationary. For a price series, the nonstationarity is mainly due
to the fact that there is no fixed level for the price. In the time series literature, such
a nonstationary series is called unit-root nonstationary time series. The best known
example of unit-root nonstationary time series is the random-walk model.

2.7.1 Random Walk

A time series {pt } is a random walk if it satisfies

pt = pt−1 + at , (2.32)

where p0 is a real number denoting the starting value of the process and {at } is a
white noise series. If pt is the log price of a particular stock at date t , then p0 could
be the log price of the stock at its initial public offering (i.e., the logged IPO price).
If at has a symmetric distribution around zero, then conditional on pt−1, pt has a
50–50 chance to go up or down, implying that pt would go up or down at random.
If we treat the random-walk model as a special AR(1) model, then the coefficient
of pt−1 is unity, which does not satisfy the weak stationarity condition of an AR(1)
model. A random-walk series is, therefore, not weakly stationary, and we call it a
unit-root nonstationary time series.

The random-walk model has been widely considered as a statistical model for
the movement of logged stock prices. Under such a model, the stock price is not
predictable or mean reverting. To see this, the 1-step ahead forecast of model (2.32)
at the forecast origin h is

p̂h(1) = E(ph+1 | ph, ph−1, . . .) = ph,

which is the log price of the stock at the forecast origin. Such a forecast has no
practical value. The 2-step ahead forecast is
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p̂h(2) = E(ph+2 | ph, ph−1, . . .) = E(ph+1 + ah+2 | ph, ph−1, . . .)

= E(ph+1 | ph, ph−1, . . .) = p̂h(1) = ph,

which again is the log price at the forecast origin. In fact, for any forecast horizon
� > 0, we have

p̂h(�) = ph .

Thus, for all forecast horizons, point forecasts of a random-walk model are simply
the value of the series at the forecast origin. Therefore, the process is not mean-
reverting.

The MA representation of the random-walk model in Eq. (2.32) is

pt = at + at−1 + at−2 + · · · .

This representation has several important practical implications. First, the �-step
ahead forecast error is

eh(�) = ah+� + · · · + ah+1,

so that Var[eh(�)] = �σ 2
a , which diverges to infinity as � → ∞. The length of an

interval forecast of ph+� will approach infinity as the forecast horizon increases.
This result says that the usefulness of point forecast p̂h(�) diminishes as � increases,
which again implies that the model is not predictable. Second, the unconditional
variance of pt is unbounded because Var[eh(�)] approaches infinity as � increases.
Theoretically, this means that pt can assume any real value for a sufficiently large t .
For the log price pt of an individual stock, this is plausible. Yet for market indexes,
negative log price is very rare if it happens at all. In this sense, the adequacy of a
random-walk model for market indexes is questionable. Third, from the representa-
tion, ψi = 1 for all i . Thus, the impact of any past shock at−i on pt does not decay
over time. Consequently, the series has a strong memory as it remembers all of the
past shocks. In economics, the shocks are said to have a permanent effect on the
series.

2.7.2 Random Walk with a Drift

As shown by empirical examples considered so far, the log return series of a market
index tends to have a small and positive mean. This implies that the model for the
log price is

pt = µ+ pt−1 + at , (2.33)

where µ = E(pt − pt−1) and {at } is a white noise series. The constant term µ of
model (2.33) is very important in financial study. It represents the time-trend of the
log price pt and is often referred to as the drift of the model. To see this, assume that
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the initial log price is p0. Then we have

p1 = µ+ p0 + a1

p2 = µ+ p1 + a2 = 2µ+ p0 + a2 + a1

... = ...

pt = tµ+ p0 + at + at−1 + · · · + a1.

The last equation shows that the log price consists of a time trend tµ and a pure
random-walk process

∑t
i=1 ai . Because Var(

∑t
i=1 ai ) = tσ 2

a , where σ 2
a is the vari-

ance of at , the conditional standard deviation of pt is
√

tσa , which grows at a slower
rate than the conditional expectation of pt . Therefore, if we graph pt against the time
index t , we have a time trend with slope µ. A positive slope µ implies that the log
price eventually goes to infinity. In contrast, a negative µ implies that the log price
would converge to −∞ as t increases. Based on this discussion, it is not surprising
to see that the log return series of the CRSP value- and equal-weighted indexes have
a small, but statistically significant, positive mean.

To illustrate the effect of the drift parameter on the price series, we consider the
monthly log stock returns of the 3M Company from February 1946 to December
1997. As shown by the sample EACF in Table 2.5, the series has no significant serial
correlation. The series thus follows the simple model

rt = 0.0115 + at , σ̂a = 0.0639, (2.34)

where 0.0115 is the sample mean of rt and has a standard error 0.0026. The mean of
the monthly log returns of 3M stock is, therefore, significantly different from zero at
the 1% level. We use the log return series to construct two log price series—namely,

pt =
t∑

i=1

ri and p∗
t =

t∑
i=1

ai ,

where ai is the mean-corrected log return in Eq. (2.34) (i.e., at = rt − 0.0115). The
pt is the log price of 3M stock, assuming that the initial price is zero (i.e., the log
price of January 1946 was zero). The p∗

t is the corresponding log price if the mean
of log returns were zero. Figure 2.8 shows the time plots of pt and p∗

t as well as a
straight line yt = 0.0115 × t . From the plots, the importance of the constant 0.0115
in Eq. (2.34) is evident. In addition, as expected, the slope of the upward trend of pt

is about 0.0115.
Finally, it is important to understand the meaning of a constant term in a time

series model. First, for an MA(q) model in Eq. (2.19), the constant term is sim-
ply the mean of the series. Second, for a stationary AR(p) model in Eq. (2.7) or
ARMA(p, q) model in Eq. (2.25), the constant term is related to the mean via
µ = φ0/(1 − φ1 − · · · − φp). Third, for a random walk with a drift, the constant
term becomes the time slope. These different interpretations for the constant term
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Figure 2.8. Time plots of log prices for 3M stock from February 1946 to December 1997,
assuming that the log price of January 1946 was zero. The dashed line is for log price without
time trend. The straight line is yt = 0.0115 × t .

in a time series model clearly highlights the difference between dynamic and usual
linear regression models.

Another important difference between dynamic and regression models is shown
by an AR(1) model and a simple linear regression model,

rt = φ0 + φ1rt−1 + at and yt = β0 + β1xt + at .

For the AR(1) model to be meaningful, the coefficient φ1 must satisfy |φ1 | ≤ 1.
However, the coefficient β1 can assume any fixed real number.

2.7.3 General Unit-Root Nonstationary Models

Consider an ARMA model. If one extends the model by allowing the AR polynomial
to have 1 as a characteristic root, then the model becomes the well-known autoregres-
sive integrated moving-average (ARIMA) model. An ARIMA model is said to be
unit-root nonstationary because its AR polynomial has a unit root. Like a random-
walk model, an ARIMA model has strong memory because the ψi coefficients in
its MA representation do not decay over time to zero, implying that the past shock
at−i of the model has a permanent effect on the series. A conventional approach for
handling unit-root nonstationarity is to use differencing.
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Differencing
A time series yt is said to be an ARIMA(p, 1, q) process if the change series ct =
yt − yt−1 = (1 − B)yt follows a stationary and invertible ARMA(p, q) model. In
finance, price series are commonly believed to be nonstationary, but the log return
series, rt = ln(pt ) − ln(pt−1), is stationary. In this case, the log price series is
unit-root nonstationary and hence can be treated as an ARIMA process. The idea of
transforming a nonstationary series into a stationary one by considering its change
series is called differencing in the time series literature. More formally, ct = yt −yt−1
is referred to as the first differenced series of yt . In some scientific fields, a time
series yt may contain multiple unit roots and needs to be differenced multiple times
to become stationary. For example, if both yt and its first differenced series ct =
yt −yt−1 are unit-root nonstationary, but st = ct −ct−1 = yt −2yt−1+yt−2 is weakly
stationary, then yt has double unit roots, and st is the second differenced series of
yt . In addition, if st follows an ARMA(p, q) model, then yt is an ARIMA(p, 2, q)
process. For such a time series, if st has a nonzero mean, then yt has a quadratic time
function and the quadratic time coefficient is related to the mean of st . The seasonally
adjusted series of U.S. quarterly gross domestic product implicit price deflator might
have double unit roots. However, the mean of the second differenced series is not
significantly different from zero; see Exercises of the chapter. Box, Jenkins, and
Reinsel (1994) discuss many properties of general ARIMA models.

2.7.4 Unit-Root Test

To test whether the log price pt of an asset follows a random walk or a random walk
with a drift, we employ the models

pt = φ1 pt−1 + et (2.35)

pt = φ0 + φ1 pt−1 + et , (2.36)

where et denotes the error term, and consider the null hypothesis Ho : φ1 = 1 versus
the alternative hypothesis Ha : φ1 < 1. This is the well-known unit-root testing
problem; see Dickey and Fuller (1979). A convenient test statistic is the t ratio of the
least squares (LS) estimate of φ1 under the null hypothesis. For Eq. (2.35), the LS
method gives

φ̂1 =
∑T

t=1 pt−1 pt∑T
t=1 p2

t−1

, σ̂ 2
e =

∑T
t=1(pt − φ̂1 pt−1)

2

T − 1
,

where p0 = 0 and T is the sample size. The t ratio is

DF ≡ t-ratio = φ̂1 − 1

std(φ̂1)
=

∑T
t=1 pt−1et

σ̂e

√∑T
t=1 p2

t−1

,
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which is commonly referred to as the Dickey–Fuller test. If {et } is a white noise series
with finite moments of order slightly greater than 2, then the DF-statistic converges
to a function of the standard Brownian motion as T → ∞; see Chan and Wei (1988)
and Phillips (1987) for more information. If φ0 is zero but Eq. (2.36) is employed
anyway, then the resulting t ratio for testing φ1 = 1 will converge to another non-
standard asymptotic distribution. In either case, simulation is used to obtain critical
values of the test statistics; see Fuller (1976, Chapter 8) for selected critical values.
Yet if φ0 �= 0 and Eq. (2.36) is used, then the t ratio for testing φ1 = 1 is asymp-
totically normal. However, large sample sizes are needed for the asymptotic normal
distribution to hold. Standard Brownian motion is introduced in Chapter 6.

2.8 SEASONAL MODELS

Some financial time series such as quarterly earning per share of a company exhibits
certain cyclical or periodic behavior. Such a time series is called a seasonal time
series. Figure 2.9(a) shows the time plot of quarterly earning per share of Johnson
and Johnson from the first quarter of 1960 to the last quarter of 1980. The data
obtained from Shumway and Stoffer (2000) possess some special characteristics. In
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Figure 2.9. Time plots of quarterly earning per share of Johnson and Johnson from 1960 to
1980: (a) observed earning, (b) log earning.
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particular, the earning grew exponentially during the sample period and had a strong
seasonality. Furthermore, the variability of earning increased over time. The cyclical
pattern repeats itself every year so that the periodicity of the series is 4. If monthly
data are considered (e.g., monthly sales of Wal-Mart Stores), then the periodicity is
12. Seasonal time series models are also useful in pricing weather-related derivatives
and energy futures.

Analysis of seasonal time series has a long history. In some applications, sea-
sonality is of secondary importance and is removed from the data, resulting in a
seasonally adjusted time series that is then used to make inference. The procedure
to remove seasonality from a time series is referred to as seasonal adjustment. Most
economic data published by the U.S. government are seasonally adjusted (e.g., the
growth rate of domestic gross product and the unemployment rate). In other appli-
cations such as forecasting, seasonality is as important as other characteristics of
the data and must be handled accordingly. Because forecasting is a major objective
of financial time series analysis, we focus on the latter approach and discuss some
econometric models that are useful in modeling seasonal time series.

2.8.1 Seasonal Differencing

Figure 2.9(b) shows the time plot of log earning per share of Johnson and John-
son. We took the log transformation for two reasons. First, it is used to handle the
exponential growth of the series. Indeed, the new plot confirms that the growth is
linear in the log scale. Second, the transformation is used to stablize the variability
of the series. Again, the increasing pattern in variability of Figure 2.9(a) disappears
in the new plot. Log transformation is commonly used in analysis of financial and
economic time series. In this particular instance, all earnings are positive so that no
adjustment is needed before taking the transformation. In some cases, one may need
to add a positive constant to every data point before taking the transformation.

Denote the log earning by xt . The upper left panel of Figure 2.10 shows the sample
ACF of xt , which indicates that the quarterly log earning per share has strong serial
correlations. A conventional method to handle such strong serial correlations is to
consider the first differenced series of xt [i.e., �xt = xt − xt−1 = (1 − B)xt ]. The
lower left plot of Figure 2.10 gives the sample ACF of�xt . The ACF is strong when
the lag is a multiple of periodicity 4. This is a well-documented behavior of sample
ACF of a seasonal time series. Following the procedure of Box, Jenkins, and Reinsel
(1994, Chapter 9), we take another difference of the data—that is,

�4(�xt ) = (1 − B4)�xt = �xt −�xt−4 = xt − xt−1 − xt−4 + xt−5.

The operation �4 = (1 − B4) is called a seasonal differencing. In general, for a
seasonal time series yt with periodicity s, seasonal differencing means

�s yt = yt − yt−s = (1 − Bs)yt .

The conventional difference�yt = yt −yt−1 = (1−B)yt is referred to as the regular
differencing. The lower right plot of Figure 2.10 shows the sample ACF of �4�xt ,
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Figure 2.10. Sample ACF of the log series of quarterly earning per share of Johnson and
Johnson from 1960 to 1980, where xt is the log earning, “dx” is the first differenced series,
“ds” is the seasonally differenced series, and “dxds” denotes series with regular and seasonal
differencing.

which has a significant negative ACF at lag 1 and a marginal negative correlation at
lag 4. For completeness, Figure 2.10 also gives the sample ACF of the seasonally
differenced series �4xt .

2.8.2 Multiplicative Seasonal Models

The behavior of the sample ACF of (1 − B4)(1 − B)xt in Figure 2.10 is common
among seasonal time series. It led to the development of the following special sea-
sonal time series model

(1 − Bs)(1 − B)xt = (1 − θB)(1 −�Bs)at , (2.37)

where s is the periodicity of the series, at is a white noise series, | θ | < 1, and |� | <
1. This model is referred to as the airline model in the literature; see Box, Jenkins,
and Reinsel (1994, Chapter 9). It has been found to be widely applicable in modeling
seasonal time series. The AR part of the model simply consists of the regular and
seasonal differences, whereas the MA part involves two parameters. Focusing on the
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MA part (i.e., on the model),

wt = (1 − θB)(1 −�Bs)at = at − θat−1 −�at−s + θ�at−s−1,

where wt = (1 − Bs)(1 − B)xt and s > 1. It is easy to obtain that E(wt ) = 0 and

Var(wt ) = (1 + θ2)(1 +�2)σ 2
a

Cov(wt , wt−1) = −θ(1 +�2)σ 2
a

Cov(wt , wt−s+1) = θ�σ 2
a

Cov(wt , wt−s) = −�(1 + θ2)σ 2
a

Cov(wt , wt−s−1) = θ�σ 2
a

Cov(wt , wt−�) = 0, for � �= 0, 1, s − 1, s, s + 1.

Consequently, the ACF of the wt series is given by

ρ1 = −θ
1 + θ2

, ρs = −�
1 +�2

, ρs−1 = ρs+1 = ρ1ρs = θ�

(1 + θ2)(1 +�2)
,

and ρ� = 0 for � > 0 and � �= 1, s − 1, s, s + 1. For example, if wt is a quarterly
time series, then s = 4 and the ACF is nonzero at lags 1, 3, 4, and 5 only.

It is interesting to compare the prior ACF with those of the MA(1) model yt =
(1 − θB)at and the MA(s) model zt = (1 − �Bs)at . The ACF of yt and zt series
are

ρ1(y) = −θ
1 + θ2

, and ρ�(y) = 0, � > 1,

ρs(z) = −�
1 +�2

,and ρ�(z) = 0, � > 0, �= s.

We see that (i) ρ1 = ρ1(y), (ii) ρs = ρs(z), and (iii) ρs−1 = ρs+1 = ρ1(y) ×
ρs(z). Therefore, the ACF of wt at lags (s − 1) and (s + 1) can be regarded as
the interaction between lag-1 and lag-s serial dependence, and the model of wt is
called a multiplicative seasonal MA model. In practice, a multiplicative seasonal
model says that the dynamics of the regular and seasonal components of the series
are approximately orthogonal.

The model

wt = (1 − θB −�Bs)at , (2.38)

where | θ | < 1 and |� | < 1, is a nonmultiplicative seasonal MA model. It is
easy to see that for the model in Eq. (2.38), ρs+1 = 0. A multiplicative model is
more parsimonious than the corresponding nonmultiplicative model because both
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models use the same number of parameters, but the multiplicative model has more
nonzero ACFs.

Example 2.2. In this example, we apply the airline model to the log series
of quarterly earning per share of Johnson and Johnson from 1960 to 1980. Based on
the exact likelihood method, the fitted model is

(1 − B)(1 − B4)xt = (1 − 0.678B)(1 − 0.314B4)at , σ̂a = 0.089,

where standard errors of the two MA parameters are 0.080 and 0.101, respectively.
The Ljung-Box statistics of the residuals show Q(12) = 10.0 with p value 0.44. The
model appears to be adequate.

To illustrate the forecasting performance of the prior seasonal model, we reesti-
mate the model using the first 76 observations and reserve the last eight data points
for forecasting evaluation. We compute 1-step to 8-step ahead forecasts and their
standard errors of the fitted model at the forecast origin h = 76. An antilog trans-
formation is taken to obtain forecasts of earning per share using the relationship
between normal and log-normal distributions given in Chapter 1. Figure 2.11 shows
the forecast performance of the model, where the observed data are in solid line,
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Figure 2.11. Out-of-sample point and interval forecasts for the quarterly earning of Johnson
and Johnson. The forecast origin is the fourth quarter of 1978. In the plot, solid line shows
the actual observations, dots represent point forecasts, and dashed lines show a 95% interval
forecasts.
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point forecasts are shown by dots, and the dashed lines show 95% interval forecasts.
The forecasts show a strong seasonal pattern and are close to the observed data.

When the seasonal pattern of a time series is stable over time (e.g., close to a
deterministic function), dummy variables may be used to handle the seasonality. This
approach is taken by some analysts. However, deterministic seasonality is a special
case of the multiplicative seasonal model discussed before. Specifically, if � = 1,
then model (2.37) contains a deterministic seasonal component. Consequently, the
same forecasts are obtained by using either dummy variables or a multiplicative sea-
sonal model when the seasonal pattern is deterministic. Yet use of dummy variables
can lead to inferior forecasts if the seasonal pattern is not deterministic. In practice,
we recommend that the exact likelihood method should be used to estimate a multi-
plicative seasonal model, especially when the sample size is small or when there is
the possibility of having a deterministic seasonal component.

2.9 REGRESSION MODELS WITH TIME SERIES ERRORS

In many applications, the relationship between two time series is of major interest.
The Market Model in finance is an example that relates the return of an individual
stock to the return of a market index. The term structure of interest rates is another
example in which the time evolution of the relationship between interest rates with
different maturities is investigated. These examples lead to the consideration of a
linear regression in the form

r1t = α + βr2t + et , (2.39)

where r1t and r2t are two time series and et denotes the error term. The least squares
(LS) method is often used to estimate model (2.39). If {et } is a white noise series,
then the LS method produces consistent estimates. In practice, however, it is common
to see that the error term et is serially correlated. In this case, we have a regression
model with time series errors, and the LS estimates of α and β may not be consistent.

Regression model with time series errors is widely applicable in economics and
finance, but it is one of the most commonly misused econometric models because
the serial dependence in et is often overlooked. It pays to study the model carefully.

We introduce the model by considering the relationship between two U.S. weekly
interest rate series:

1. r1t : The 1-year Treasury constant maturity rate.
2. r3t : The 3-year Treasury constant maturity rate.

Both series have 1967 observations from January 5, 1962 to September 10, 1999 and
are measured in percentages. The series are obtained from the Federal Reserve Bank
of St Louis. Figure 2.12 shows the time plots of the two interest rates with solid
line denoting the 1-year rate and dashed line the 3-year rate. Figure 2.13(a) plots r1t

versus r3t , indicating that, as expected, the two interest rates are highly correlated.
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Figure 2.12. Time plots of U.S. weekly interest rates (in percentages) from January 5, 1962
to September 10, 1999. The solid line is the Treasury 1-year constant maturity rate and the
dashed line the Treasury 3-year constant maturity rate.
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Figure 2.13. Scatterplots of U.S. weekly interest rates from January 5, 1962 to September 10,
1999: (a) 3-year rate versus 1-year rate, and (b) changes in 3-year rate versus changes in 1-year
rate.
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A naive way to describe the relationship between the two interest rates is to use the
simple model r3t = α + βr1t + et . This results in a fitted model

r3t = 0.911 + 0.924r1t + et , σ̂e = 0.538 (2.40)

with R2 = 95.8%, where the standard errors of the two coefficients are 0.032 and
0.004, respectively. Model (2.40) confirms the high correlation between the two
interest rates. However, the model is seriously inadequate as shown by Figure 2.14,
which gives the time plot and ACF of its residuals. In particular, the sample ACF of
the residuals is highly significant and decays slowly, showing the pattern of a unit-
root nonstationary time series. The behavior of the residuals suggests that marked
differences exist between the two interest rates. Using the modern econometric ter-
minology, if one assumes that the two interest rate series are unit-root nonstationary,
then the behavior of the residuals of Eq. (2.40) indicates that the two interest rates are
not co-integrated; see Chapter 8 for discussion of co-integration. In other words, the
data fail to support the hypothesis that there exists a long-term equilibrium between
the two interest rates. In some sense, this is not surprising because the pattern of
“inverted yield curve” did occur during the data span. By inverted yield curve, we
mean the situation under which interest rates are inversely related to their time to
maturities.
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Figure 2.14. Residual series of linear regression (2.40) for two U.S. weekly interest rates:
(a) time plot, and (b) sample ACF.
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Figure 2.15. Time plots of the change series of U.S. weekly interest rates from January 12,
1962 to September 10, 1999: (a) changes in the Treasury 1-year constant maturity rate, and
(b) changes in the Treasury 3-year constant maturity rate.

The unit-root behavior of both interest rates and the residuals of Eq. (2.40) leads
to the consideration of the change series of interest rates. Let

1. c1t = r1t − r1,t−1 = (1 − B)r1t for t ≥ 2: Changes in the 1-year interest rate;
2. c3t = r3t − r3,t−1 = (1 − B)r3t for t ≥ 2: Changes in the 3-year interest rate,

and consider the linear regression c3t = α+βc1t +et . Figure 2.15 shows time plots of
the two change series, whereas Figure 2.13(b) provides a scatterplot between them.
The change series remain highly correlated with a fitted linear regression model
given by

c3t = 0.0002 + 0.7811c1t + et , σ̂e = 0.0682, (2.41)

with R2 = 84.8%. The standard errors of the two coefficients are 0.0015 and 0.0075,
respectively. This model further confirms the strong linear dependence between
interest rates. Figure 2.16 shows the time plot and sample ACF of the residuals of
Eq. (2.41). Once again, the ACF shows some significant serial correlation in the
residuals, but the magnitude of the correlation is much smaller. This weak serial
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Figure 2.16. Residual series of the linear regression (2.41) for two change series of U.S.
weekly interest rates: (a) time plot, and (b) sample ACF.

dependence in the residuals can be modeled by using the simple time series models
discussed in the previous sections, and we have a linear regression with time series
errors.

The main objective of this section is to discuss a simple approach for building
a linear regression model with time series errors. The approach is straightforward.
We employ a simple time series model discussed in this chapter for the residual
series and estimate the whole model jointly. For illustration, consider the simple
linear regression in Eq. (2.41). Because residuals of the model are serially correlated,
we identify a simple ARMA model for the residuals. From the sample ACF of the
residuals shown in Figure 2.16, we specify an MA(1) model for the residuals and
modify the linear regression model to

c3t = α + βc1t + et , et = at − θ1at−1, (2.42)

where {at } is assumed to be a white noise series. In other words, we simply use an
MA(1) model, without the constant term, to capture the serial dependence in the error
term of Eq. (2.41). The resulting model is a simple example of linear regression with
time series errors. In practice, more elaborated time series models can be added to a
linear regression equation to form a general regression model with time series errors.
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Estimating a regression model with time series errors was not easy before the
advent of modern computers. Special methods such as the Cochrane–Orcutt estima-
tor have been proposed to handle the serial dependence in the residuals; see Greene
(2000, p. 546). By now, the estimation is as easy as that of other time series models.
If the time series model used is stationary and invertible, then one can estimate the
model jointly via the maximum likelihood method. This is the approach we take by
using the SCA package. For the U.S. weekly interest rate data, the fitted version of
model (2.42) is

c3t = 0.0002 + 0.7824c1t + et , et = at + 0.2115at−1, σ̂a = 0.0668, (2.43)

with R2 = 85.4%. The standard errors of the parameters are 0.0018, 0.0077, and
0.0221, respectively. The model no longer has a significant lag-1 residual ACF, even
though some minor residual serial correlations remain at lags 4 and 6. The incremen-
tal improvement of adding additional MA parameters at lags 4 and 6 to the residual
equation is small and the result is not reported here.

Comparing the models in Eqs. (2.40), (2.41), and (2.43), we make the following
observations. First, the high R2 and coefficient 0.924 of model (2.40) are misleading
because the residuals of the model show strong serial correlations. Second, for the
change series, R2 and the coefficient of c1t of models (2.41) and (2.43) are close. In
this particular instance, adding the MA(1) model to the change series only provides a
marginal improvement. This is not surprising because the estimated MA coefficient
is small numerically, even though it is statistically highly significant. Third, the anal-
ysis demonstrates that it is important to check residual serial dependence in linear
regression analysis.

Because the constant term of Eq. (2.43) is insignificant, the model shows that the
two weekly interest rate series are related as

r3t = r3,t−1 + 0.782(r1t − r1,t−1)+ at + 0.212at−1.

The interest rates are concurrently and serially correlated.

Summary
We outline a general procedure for analyzing linear regression models with time
series errors:

1. Fit the linear regression model and check serial correlations of the residuals.

2. If the residual series is unit-root nonstationary, take the first difference of both
the dependent and explanatory variables. Go to step 1. If the residual series
appears to be stationary, identify an ARMA model for the residuals and modify
the linear regression model accordingly.

3. Perform a joint estimation via the maximum likelihood method and check the
fitted model for further improvement.
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To check the serial correlations of residuals, we recommend that the Ljung–Box
statistics be used instead of the Durbin–Watson (DW) statistic because the latter
only considers the lag-1 serial correlation. There are cases in which residual serial
dependence appears at higher order lags. This is particularly so when the time series
involved exhibits some seasonal behavior.

Remark: For a residual series et with T observations, the Durbin–Watson statis-
tic is

DW =
∑T

t=2(et − et−1)
2∑T

t=1 e2
t

.

Straightforward calculation shows that DW ≈ 2(1 − ρ̂1), where ρ̂1 is the lag-1 ACF
of {et }.

2.10 LONG-MEMORY MODELS

We have discussed that for a stationary time series the ACF decays exponentially to
zero as lag increases. Yet for a unit-root nonstationary time series, it can be shown
that the sample ACF converges to 1 for all fixed lags as the sample size increases; see
Chan and Wei (1988) and Tiao and Tsay (1983). There exist some time series whose
ACF decays slowly to zero at a polynomial rate as the lag increases. These processes
are referred to as long-memory time series. One such an example is the fractionally
differenced process defined by

(1 − B)d xt = at , −0.5 < d < 0.5, (2.44)

where {at } is a white noise series. Properties of model (2.44) have been widely stud-
ied in the literature (e.g., Hosking, 1981). We summarize some of these properties
below.

1. If d < 0.5, then xt is a weakly stationary process and has the infinite MA
representation

xt = at +
∞∑

i=1

ψi at−i , with ψk = d(1 + d) · · · (k − 1 + d)

k!

= (k + d − 1)!
k!(d − 1)! .

2. If d > −0.5, then xt is invertible and has the infinite AR representation

xt =
∞∑

i=1

πi xt−i + at , with πk = −d(1 − d) · · · (k − 1 − d)

k!
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= (k − d − 1)!
k!(−d − 1)! .

3. For −0.5 < d < 0.5, the ACF of xt is

ρk = d(1 + d) · · · (k − 1 + d)

(1 − d)(2 − d) · · · (k − d)
, k = 1, 2, . . . .

In particular, ρ1 = d/(1 − d) and

ρk ≈ (−d)!
(d − 1)!k

2d−1, as k → ∞.

4. For −0.5 < d < 0.5, the PACF of xt is φk,k = d/(k − d) for k = 1, 2, . . . .

5. For −0.5 < d < 0.5, the spectral density function f (ω) of xt , which is the
Fourier transform of the ACF of xt , satisfies

f (ω) ∼ ω−2d , as ω → 0, (2.45)

where ω ∈ [0, 2π] denotes the frequency.

Of particular interest here is the behavior of ACF of xt when d < 0.5. The property
says that ρk ∼ k2d−1, which decays at a polynomial, instead of exponential, rate. For
this reason, such an xt process is called a long-memory time series. A special char-
acteristic of the spectral density function in Eq. (2.45) is that the spectrum diverges
to infinity as ω → 0. However, the spectral density function of a stationary ARMA
process is bounded for all ω ∈ [0, 2π].

Earlier we used the binomial theorem for noninteger powers

(1 − B)d =
∞∑

k=0

(−1)k
(

d
k

)
Bk,

(
d
k

)
= d(d − 1) · · · (d − k + 1)

k! .

If the fractionally differenced series (1− B)d xt follows an ARMA(p, q)model, then
xt is called an ARFIMA(p, d, q) process, which is a generalized ARIMA model by
allowing for noninteger d.

In practice, if the sample ACF of a time series is not large in magnitude, but decays
slowly, then the series may have long memory. As an illustration, Figure 2.17 shows
the sample ACFs of the absolute series of daily simple returns for the CRSP value-
and equal-weighted indexes from July 3, 1962 to December 31, 1997. The ACFs are
relatively small in magnitude, but decay very slowly; they appear to be significant
at the 5% level even after 300 lags. For more information about the behavior of
sample ACF of absolute return series, see Ding, Granger, and Engle (1993). For the
pure fractionally differenced model in Eq. (2.44), one can estimate d using either a
maximum likelihood method or a regression method with logged periodogram at the
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Figure 2.17. Sample autocorrelation function of the absolute series of daily simple returns for
the CRSP value- and equal-weighted indexes: (a) the value-weighted index return, and (b) the
equal-weighted index return.

lower frequencies. Finally, long-memory models have attracted some attention in the
finance literature in part because of the work on fractional Brownian motion in the
continuous-time models.

APPENDIX A: SOME SCA COMMANDS

A. Commands Used in Section 2.4

The data file is m-vw.dat and comments start with “–”. These comments explain the
function of each command.

-- load data into SCA and denote the series by vw.
input vw. file ’m-vw.dat’
-- compute 10 lags of PACF.
pacf vw. maxl 10.
-- compute AIC for AR(1) to AR(10).
miden vw. no ccm. arfits 1 to 10.
-- specify an AR(3) model and denote the model by m1.
tsm m1. model (1,2,3)vw=c0+noise.
-- estimate the model and store the residuals in r1.
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estim m1. hold resi(r1)
-- compute ACF of the residuals, including Q statistics.
acf r1.
-- refine the model to an AR(5).
tsm m1. model (1,2,3,4,5)vw=c0+noise.
-- estimate the model and store the residuals in r1.
estim m1. hold resi(r1)
-- compute ACF of the residuals.
acf r1. maxl 10.
-- compute p-value of the Q(5) statistic.
p=1.0-cdfc(11.2,5)
-- print p-value.
print p
-- re-estimate the model using the first 858 observations.
estim m1. span 1,858.
-- compute 1-step to 6-step ahead forecasts at origin 858.
ufore m1. orig 858. nofs 6.
-- quit SCA.
stop

B. Commands used in Section 2.9

The 1-year maturity interest rates are in the file “wgs1yr.dat” and the 3-year rates are
in the file “wgs3yr.dat.”

-- load the data into SCA, denote the data by rate1 and rate3.
input date, rate1. file ’wgs1yr.dat’
--
input date,rate3. file ’wgs3yr.dat’
-- specify a simple linear regression model.
tsm m1. model rate3=b0+(b1)rate1+noise.
-- estimate the specified model and store residual in r1.
estim m1. hold resi(r1).
-- compute 10 lags of residual acf.
acf r1. maxl 10.
-- difference the two series, denote the new series by c1t and c3t
diff old rate1,rate3. new c1t, c3t. compress.
-- specify a linear regression model for the differenced data
tsm m2. model c3t=h0+(h1)c1t+noise.
-- estimation
estim m2. hold resi(r2).
-- compute residual acf.
acf r2. maxl 10.
-- specify a regression model with time series errors.
tsm m3. model c3t=g0+(g1)c1t+(1)noise.
-- estimate the model using the exact likelihood method.
estim m3. method exact. hold resi(r3).
-- compute residual acf.
acf r3. maxl 10.
-- refine the model to include more MA lags.
tsm m4. model c3t=g0+(g1)c1t+(1,4,6)noise.
-- estimation
estim m4. method exact. hold resi(r4).
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-- compute residual acf.
acf r4. maxl 10.
-- exit SCA
stop

EXERCISES

1. Suppose that the simple return of a monthly bond index follows the MA(1)
model

Rt = at + 0.2at−1, σa = 0.025.

Assume that a100 = 0.01. Compute the 1-step and 2-step ahead forecasts of the
return at the forecast origin t = 100. What are the standard deviations of the
associated forecast errors? Also compute the lag-1 and lag-2 autocorrelations of
the return series.

2. Suppose that the daily log return of a security follows the model

rt = 0.01 + 0.2rt−2 + at ,

where {at } is a Gaussian white noise series with mean zero and variance 0.02.
What are the mean and variance of the return series rt ? Compute the lag-1 and
lag-2 autocorrelations of rt . Assume that r100 = −0.01, and r99 = 0.02. Com-
pute the 1- and 2-step ahead forecasts of the return series at the forecast origin
t = 100. What are the associated standard deviations of the forecast errors?

3. The file “bnd.dat” contains simple returns of monthly indexes of U.S. govern-
ment bonds with maturities in 30 years, 20 years, 10 years, 5 years, and 1 year
(in column order). The data are obtained from CRSP, and the sample period is
from January 1942 to December 1999. Build an AR or MA model for the simple
return of bond index with maturity 5 years. Is the fitted model adequate?

4. Consider the sampling period from January 1990 to December 1999. Are the
daily log returns of ALCOA stock predictable? You may test the hypothesis
using (a) the first 5 lags of the autocorrelation function, and (b) the first 10 lags of
the autocorrelation function. Draw your conclusion by using the 5% significance
level. The data are available from CRSP.

5. Consider the daily log returns of Hewlett-Packard stock, value-weighted index,
equal-weighted index, and S&P 500 index from January 1980 to December 1999
for 5056 observations. The returns include all distributions and are in percent-
ages. The data can be obtained from CRSP or from the file “d-hwp3dx8099.dat,”
which has four columns with the same ordering as stated before. For each return
series, test the hypothesis Ho : ρ1 = · · · = ρ10 = 0 versus the alternative
hypothesis Ha : ρi �= 0 for some i ∈ {1, . . . , 10}, where ρi is the lag-i autocor-
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relation. Draw your conclusion based on the 5% significance level. Compare the
results between returns of individual stocks and market indexes.

6. Consider the monthly log returns of CRSP equal-weighted index from January
1962 to December 1999 for 456 observations. You may obtain the data from
CRSP directly or from the file “m-ew6299.dat” on the Web.

• Build an AR model for the series and check the fitted model.
• Build an MA model for the series and check the fitted model.
• Compute 1- and 2-step ahead forecasts of the AR and MA models built in the

previous two questions.
• Compare the fitted AR and MA models.

7. Column 3 of the file “d-hwp3dx8099.dat” contains the daily log returns of the
CRSP equal-weighted index from January 1980 to December 1999.

• Build an AR model for the series and check the fitted model.
• Build an ARMA model for the series and check the fitted model.
• Use the fitted AR model to compute 1-step to 7-step ahead forecasts at the

forecast origin December 27, 1999 (i.e., h = 5052). Note that for this particu-
lar instance the lag-5 coefficient is statistically significant. This might be due
to the weekend effects.

8. Again, consider the daily log return of CRSP equal-weighted index from Jan-
uary 1980 to December 1999. Create indicator variables for Mondays, Tues-
days, Wednesdays, and Thursdays and use a regression model, possibly with
time series errors, to study the effects of trading days on the index return. What
is the fitted model? Are there serial correlations in the residuals?

9. This problem is concerned with the dynamic relationship between the spot
and futures prices of the S&P500 index. The data file “sp5may.dat” has three
columns: log(futures price), log(spot price), and cost-of-carry (×100). The data
were obtained from the Chicago Mercantile Exchange for the S&P 500 stock
index in May 1993 and its June futures contract. The time interval is 1 minute
(intraday). Several authors used the data to study index futures arbitrage. Here
we focus on the first two columns. Let ft and st be the log prices of futures
and spot, respectively. Consider yt = ft − ft−1 and xt = st − st−1. Build a
regression model with time series errors between {yt } and {xt }, with yt being
the dependent variable.

10. The data file “qunemrate.dat” contains the U.S. quarterly unemployment rate,
seasonally adjusted, from 1948 to the second quarter of 1991. Consider the
change series yt = xt − xt−1, where xt is the quarterly unemployment rate.
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Build an AR model for the yt series. Does the fitted model suggest the existence
of business cycles?

11. The quarterly gross domestic product implicit price deflator is often used as a
measure of inflation. The file “gdpipd.dat” contains the data for U.S. from the
first quarter of 1947 to the last quarter of 2000. The data are seasonally adjusted
and equal to 100 for year 1996. Build an ARIMA model for the series and check
the validity of the fitted model. The data are obtained from the Federal Reserve
Bank of St Louis.
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C H A P T E R 3

Conditional Heteroscedastic Models

The objective of this chapter is to study some econometric models available in the
literature for modeling the volatility of an asset return. These models are referred to
as conditional heteroscedastic models.

Volatility is an important factor in options trading. Here volatility means the con-
ditional variance of the underlying asset return. Consider, for example, the price of a
European call option, which is a contract giving its holder the right, but not the obli-
gation, to buy a fixed number of shares of a specified common stock at a fixed price
on a given date. The fixed price is called the strike price and is commonly denoted
by K . The given date is called the expiration date. The important time duration here
is the time to expiration, and we denote it by �. If the holder can exercise her right
any time on or before the expiration date, then the option is called an American call
option. The well-known Black–Scholes option pricing formula states that the price
of a European call option is

ct = Pt�(x)− Kr−��(x −σt
√
�), and x = ln(Pt/Kr−�)

σt
√
�

+ 1

2
σt

√
�, (3.1)

where Pt is the current price of the underlying stock, r is the risk-free interest rate,
σt is the conditional standard deviation of the log return of the specified stock, and
�(x) is the cumulative distribution function of the standard normal random variable
evaluated at x . A derivation of the formula is given later in Chapter 6. The formula
has several nice interpretations, but it suffices to say here that the conditional vari-
ance of the log return of the underlying stock plays an important role. This volatility
evolves over time.

Volatility is also important in risk management. As discussed in Chapter 7, volatil-
ity modeling provides a simple approach to calculating value at risk of a financial
position. Finally, modeling the volatility of a time series can improve the efficiency
in parameter estimation and the accuracy in interval forecast.

The univariate volatility models discussed in this chapter include the autoregres-
sive conditional heteroscedastic (ARCH) model of Engle (1982), the generalized
ARCH (GARCH) model of Bollerslev (1986), the exponential GARCH (EGARCH)
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model of Nelson (1991), the conditional heteroscedastic autoregressive moving-
average (CHARMA) model of Tsay (1987), the random coefficient autoregressive
(RCA) model of Nicholls and Quinn (1982), and the stochastic volatility (SV)
models of Melino and Turnbull (1990), Harvey, Ruiz, and Shephard (1994), and
Jacquier, Polson, and Rossi (1994). We also discuss advantages and weaknesses
of each volatility model and show some applications of the models. Multivariate
volatility models, including those with time-varying correlations, are discussed in
Chapter 9.

3.1 CHARACTERISTICS OF VOLATILITY

A special feature of stock volatility is that it is not directly observable. For exam-
ple, consider the daily log returns of IBM stock. The daily volatility is not directly
observable from the returns because there is only one observation in a trading day. If
intraday data of the stock, such as 5-minute returns, are available, then one can esti-
mate the daily volatility. The accuracy of such an estimate deserves a careful study,
however. Furthermore, stock volatility consists of intraday volatility and variation
between trading days. The unobservability of volatility makes it difficult to evaluate
the forecasting performance of conditional heteroscedastic models. We discuss this
issue later.

In options markets, if one accepts the idea that the prices are governed by an
econometric model such as the Black–Scholes formula, then one can use the price
to obtain the “implied” volatility. Yet this approach is often criticized for using a
specific model, which is based on some assumptions that might not hold in practice.
For instance, from the observed prices of a European call option, one can use the
Black–Scholes formula in Eq. (3.1) to deduce the conditional standard deviation σt .
The resulting value of σ 2

t is called the implied volatility of the underlying stock.
However, this implied volatility is derived under the log normal assumption for the
return series. It might be very different from the actual volatility. Experience shows
that implied volatility of an asset return tends to be larger than that obtained by using
a GARCH type of volatility model.

Although volatility is not directly observable, it has some characteristics that are
commonly seen in asset returns. First, there exist volatility clusters (i.e., volatility
may be high for certain time periods and low for other periods). Second, volatility
evolves over time in a continuous manner—that is, volatility jumps are rare. Third,
volatility does not diverge to infinity—that is, volatility varies within some fixed
range. Statistically speaking, this means that volatility is often stationary. Fourth,
volatility seems to react differently to a big price increase or a big price drop. These
properties play an important role in the development of volatility models. Some
volatility models were proposed specifically to correct the weaknesses of the existing
ones for their inability to capture the characteristics mentioned earlier. For example,
the EGARCH model was developed to capture the asymmetry in volatility induced
by big “positive” and “negative” asset returns.
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3.2 STRUCTURE OF A MODEL

Let rt be the log return of an asset at time index t . The basic idea behind volatility
study is that the series {rt } is either serially uncorrelated or with minor lower order
serial correlations, but it is dependent. For illustration, Figure 3.1 shows the ACF and
PACF of some functions of the monthly log stock returns of Intel Corporation from
January 1973 to December 1997. The upper left panel shows the sample ACF of the
return, which suggests no significant serial correlations except for a minor one at
lag 7. The upper right panel shows the sample ACF of the absolute log returns (i.e.,
| rt |), whereas the lower left panel shows the sample ACF of the squared returns
r2

t . These two plots clearly suggest that the monthly returns are not independent.
Combining the three plots, it seems that the returns are indeed serially uncorrelated,
but dependent. Volatility models attempt to capture such dependence in the return
series.

To put the volatility models in a proper perspective, it is informative to consider
the conditional mean and conditional variance of rt given Ft−1—that is,

µt = E(rt | Ft−1), σ 2
t = Var(rt | Ft−1) = E[(rt − µt )

2 | Ft−1], (3.2)
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Figure 3.1. Sample ACF and PACF of various functions of monthly log stock returns of Intel
Corporation from January 1973 to December 1997: (a) ACF of the log returns, (b) ACF of the
squared returns (lower left), (c) ACF of the absolute returns (upper right), and (d) PACF of the
squared returns.
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where Ft−1 denotes the information set available at time t − 1. Typically, Ft−1 con-
sists of all linear functions of the past returns. As shown by the empirical examples
of Chapter 2 and Figure 3.1, serial dependence of a stock return series rt is weak if it
exists at all. Therefore, the equation for µt in (3.2) should be simple, and we assume
that rt follows a simple time series model such as a stationary ARMA(p, q) model.
In other words, we entertain the model

rt = µt + at , µt = φ0 +
p∑

i=1

φi rt−i −
q∑

i=1

θi at−i , (3.3)

for rt , where p and q are non-negative integers.
Model (3.3) illustrates a possible financial application of the linear time series

models of Chapter 2. The order (p, q) of an ARMA model may depend on the fre-
quency of the return series. For example, daily returns of a market index often show
some minor serial correlations, but monthly returns of the index may not contain
any significant serial correlation. One may include some explanatory variables to the
conditional mean equation and use a linear regression model with time series errors
to capture the behavior of µt . For example, a dummy variable can be used for the
Mondays to study the effect of weekend on daily stock returns.

Combining Eqs. (3.2) and (3.3), we have

σ 2
t = Var(rt | Ft−1) = Var(at | Ft−1). (3.4)

The conditional heteroscedastic models of this chapter are concerned with the evolu-
tion of σ 2

t . The manner under which σ 2
t evolves over time distinguishes one volatility

model from another.
Conditional heteroscedastic models can be classified into two general categories.

Those in the first category use an exact function to govern the evolution of σ 2
t ,

whereas those in the second category use a stochastic equation to describe σ 2
t . The

GARCH model belongs to the first category, and the stochastic volatility model is in
the second category.

For simplicity in introducing volatility models, we assume that the model for the
conditional mean is given. However, we estimate the conditional mean and variance
equations jointly in empirical studies. Throughout the book, at is referred to as the
shock or mean-corrected return of an asset return at time t and σt is the positive
square-root of σ 2

t . The model for µt in Eq. (3.3) is referred to as the mean equation
for rt and the model for σ 2

t is the volatility equation for rt . Therefore, modeling
conditional heteroscedasticity amounts to augmenting a dynamic equation to a time
series model to govern the time evolution of the conditional variance of the shock.

3.3 THE ARCH MODEL

The first model that provides a systematic framework for volatility modeling is the
ARCH model of Engle (1982). The basic idea of ARCH models is that (a) the mean-
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corrected asset return at is serially uncorrelated, but dependent, and (b) the depen-
dence of at can be described by a simple quadratic function of its lagged values.
Specifically, an ARCH(m) model assumes that

at = σtεt , σ 2
t = α0 + α1a2

t−1 + · · · + αma2
t−m , (3.5)

where {εt } is a sequence of independent and identically distributed (iid) random vari-
ables with mean zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0. The coefficients
αi must satisfy some regularity conditions to ensure that the unconditional variance
of at is finite. In practice, εt is often assumed to follow the standard normal or a
standardized Student-t distribution.

From the structure of the model, it is seen that large past squared shocks {a2
t−i }m

i=1
imply a large conditional variance σ 2

t for the mean-corrected return at . Consequently,
at tends to assume a large value (in modulus). This means that, under the ARCH
framework, large shocks tend to be followed by another large shock. Here I use the
word tend because a large variance does not necessarily produce a large variate. It
only says that the probability of obtaining a large variate is greater than that of a
smaller variance. This feature is similar to the volatility clusterings observed in asset
returns.

The ARCH effect also occurs in other financial time series. Figure 3.2 shows the
time plots of (a) the percentage changes in Deutsche Mark/U.S. Dollar exchange rate
measured in 10-minute intervals from June 5, 1989 to June 19, 1989 for 2488 obser-
vations, and (b) the squared series of the percentage changes. Big percentage changes
occurred occasionally, but there exist certain stable periods. Figure 3.3(a) shows the
sample ACF of the percentage change series. Clearly, the series has no serial cor-
relation. Figure 3.3(b) shows the sample PACF of the squared series of percentage
changes. It is seen that there are some big spikes in the PACF. Such spikes suggest
that the percentage changes are not independent and have some ARCH effects.

Remark: Some authors use ht to denote the conditional variance in Eq. (3.5). In
this case, the shock becomes at = √

htεt .

3.3.1 Properties of ARCH Models

To understand the ARCH models, it pays to carefully study the ARCH(1) model

at = σtεt , σ 2
t = α0 + α1a2

t−1,

where α0 > 0 and α1 ≥ 0. First, the unconditional mean of at remains zero because

E(at ) = E[E(at | Ft−1)] = E[σt E(εt )] = 0.

Second, the unconditional variance of at can be obtained as

Var(at ) = E(a2
t ) = E[E(a2

t | Ft−1)] = E(α0 + α1a2
t−1) = α0 + α1 E(a2

t−1).
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Figure 3.2. (a) Time plot of 10-minute returns of the exchange rate between Deutsche Mark
and Dollar, and (b) the squared returns.

Because at is a stationary process with E(at ) = 0,Var(at ) = Var(at−1) = E(a2
t−1).

Therefore, we have Var(at ) = α0 + α1 Var(at ) and Var(at ) = α0/(1 − α1). Because
the variance of at must be positive, we need 0 ≤ α1 < 1. Third, in some applications,
we need higher order moments of at to exist and, hence, α1 must also satisfy some
additional constraints. For instance, to study its tail behavior, we require that the
fourth moment of at is finite. Under the normality assumption of εt in Eq. (3.5), we
have

E(a4
t | Ft−1) = 3[E(a2

t | Ft−1)]2 = 3(α0 + α1a2
t−1)

2.

Therefore,

E(a4
t ) = E[E(a4

t | Ft−1)] = 3E(α0 + α1a2
t−1)

2 = 3E[α2
0 + 2α0α1a2

t−1 + α2
1a4

t−1].
If at is fourth-order stationary with m4 = E(a4

t ), then we have

m4 = 3[α2
0 + 2α0α1 Var(at )+ α2

1m4]

= 3α2
0

(
1 + 2

α1

1 − α1

)
+ 3α2

1m4.
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Figure 3.3. (a) Sample autocorrelation function of the return series of Mark/Dollar exchange
rate, and (b) sample partial autocorrelation function of the squared returns.

Consequently,

m4 = 3α2
0(1 + α1)

(1 − α1)(1 − 3α2
1)
.

This result has two important implications: (a) since the fourth moment of at is posi-
tive, we see that α1 must also satisfy the condition 1−3α2

1 > 0; that is, 0 ≤ α2
1 < 1/3;

and (b) the unconditional kurtosis of at is

E(a4
t )

[Var(at )]2
= 3

α2
0(1 + α1)

(1 − α1)(1 − 3α2
1)

× (1 − α1)
2

α2
0

= 3
1 − α2

1

1 − 3α2
1

> 3.

Thus, the excess kurtosis of at is positive and the tail distribution of at is heavier
than that of a normal distribution. In other words, the shock at of a conditional Gaus-
sian ARCH(1) model is more likely than a Gaussian white noise series to produce
“outliers.” This is in agreement with the empirical finding that “outliers” appear more
often in asset returns than that implied by an iid sequence of normal random variates.
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These properties continue to hold for general ARCH models, but the formulas
become more complicated for higher order ARCH models. The condition αi ≥ 0 in
Eq. (3.5) can be relaxed. It is a condition to ensure that the conditional variance σ 2

t
is positive for all t . In fact, a natural way to achieve positiveness of the conditional
variance is to rewrite an ARCH(m) model as

at = σtεt , σ 2
t = α0 + A′

m,t−1�Am,t−1, (3.6)

where Am,t−1 = (at−1, . . . , at−m)
′ and � is a m × m non-negative definite matrix.

The ARCH(m) model in Eq. (3.5) requires � to be diagonal. Thus, Engle’s model
uses a parsimonious approach to approximate a quadratic function. A simple way to
achieve Eq. (3.6) is to employ a random-coefficient model for at ; see the CHARMA
and RCA models discussed later.

3.3.2 Weaknesses of ARCH Models

The advantages of ARCH models include properties discussed in the previous sub-
section. The model also has some weaknesses:

1. The model assumes that positive and negative shocks have the same effects on
volatility because it depends on the square of the previous shocks. In practice,
it is well known that price of a financial asset responds differently to positive
and negative shocks.

2. The ARCH model is rather restrictive. For instance, α2
1 of an ARCH(1) model

must be in the interval [0, 1
3 ] if the series is to have a finite fourth moment. The

constraint becomes complicated for higher order ARCH models.

3. The ARCH model does not provide any new insight for understanding the
source of variations of a financial time series. They only provide a mechanical
way to describe the behavior of the conditional variance. It gives no indication
about what causes such behavior to occur.

4. ARCH models are likely to overpredict the volatility because they respond
slowly to large isolated shocks to the return series.

3.3.3 Building an ARCH Model

A simple way to build an ARCH model consists of three steps: (1) build an economet-
ric model (e.g., an ARMA model) for the return series to remove any linear depen-
dence in the data, and use the residual series of the model to test for ARCH effects;
(2) specify the ARCH order and perform estimation; and (3) check the fitted ARCH
model carefully and refine it if necessary. More details are given later.

Modeling the Mean Effect and Testing
An ARMA model is built for the observed time series to remove any serial corre-
lations in the data. For most asset return series, this step amounts to removing the
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sample mean from the data if the sample mean is significantly different from zero.
For some daily return series, a simple AR model might be needed. The squared series
a2

t is used to check for conditional heteroscedasticity, where at = rt −µt is the resid-
ual of the ARMA model. Two tests are available here. The first test is to check the
usual Ljung–Box statistics of a2

t ; see McLeod and Li (1983). The second test for
conditional heteroscedasticity is the Lagrange multiplier test of Engle (1982). This
test is equivalent to the usual F statistic for testing αi = 0 (i = 1, . . . ,m) in the
linear regression

a2
t = α0 + α1a2

t−1 + · · · + αma2
t−m + et , t = m + 1, . . . , T,

where et denotes the error term, m is a prespecified positive integer, and T is the
sample size. Let SS R0 = ∑T

t=m+1(a
2
t − ω̄)2, where ω̄ is the sample mean of a2

t ,

and SS R1 = ∑T
t=m+1 ê2

t , where êt is the least squares residual of the prior linear
regression. Then we have

F = (SS R0 − SS R1)/m

SS R1/(T − 2m − 1)
,

which is asymptotically distributed as a chi-squared distribution with m degrees of
freedom under the null hypothesis.

Order Determination
If the test statistic F is significant, then conditional heteroscedasticity of at is
detected, and we use the PACF of a2

t to determine the ARCH order. Using PACF of
a2

t to select the ARCH order can be justified as follows. From the model in Eq. (3.5),
we have

σ 2
t = α0 + α1a2

t−1 + · · · + αma2
t−m .

For a given sample, a2
t is an unbiased estimate of σ 2

t . Therefore, we expect that a2
t

is linearly related to a2
t−1, . . . , a2

t−m in a manner similar to that of an autoregressive
model of order m. Note that a single a2

t is generally not an efficient estimate of
σ 2

t , but it can serve as an approximation that could be informative in specifying the
order m.

Alternatively, define ηt = a2
t − σ 2

t . It can be shown that {ηt } is an un-correlated
series with mean 0. The ARCH model then becomes

a2
t = α0 + α1a2

t−1 + · · · + αma2
t−m + ηt ,

which is in the form of an AR(m) model for a2
t , except that {ηt } is not an iid series.

From Chapter 2, PACF of a2
t is a useful tool to determine the order m. Because

{ηt } are not identically distributed, the least squares estimates of the prior model are
consistent, but not efficient. The PACF of a2

t may not be effective when the sample
size is small.
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Estimation
Two likelihood functions are commonly used in ARCH estimation. Under the nor-
mality assumption, the likelihood function of an ARCH(m) model is

f (a1, . . . , aT | α)
= f (aT | FT −1) f (aT −1 | FT −2) · · · f (am+1 | Fm) f (a1, . . . , am | α)

=
T∏

t=m+1

1√
2πσ 2

t

exp

[
− a2

t

2σ 2
t

]
× f (a1, . . . , am | α),

where α = (α0, α1, . . . , αm)
′ and f (a1, . . . , am | α) is the joint probability density

function of a1, . . . , am . Since the exact form of f (a1, . . . , am | α) is complicated, it
is commonly dropped from the prior likelihood function, especially when the sample
size is sufficiently large. This results in using the conditional likelihood function

f (am+1, . . . , aT | α, a1, . . . , am) =
T∏

t=m+1

1√
2πσ 2

t

exp

[
− a2

t

2σ 2
t

]
,

where σ 2
t can be evaluated recursively. We refer to estimates obtained by maximiz-

ing the prior likelihood function as the conditional maximum likelihood estimates
(MLE) under normality.

Maximizing the conditional likelihood function is equivalent to maximizing its
logarithm, which is easier to handle. The conditional log likelihood function is

�(am+1, . . . , aT | α, a1, . . . , am) =
T∑

t=m+1

−1

2
ln(2π)− 1

2
ln(σ 2

t )−
1

2

a2
t

σ 2
t
.

Since the first term ln(2π) does not involve any parameters, the log likelihood func-
tion becomes

�(am+1, . . . , aT | α, a1, . . . , am) = −
T∑

t=m+1

[
1

2
ln(σ 2

t )+
1

2

a2
t

σ 2
t

]
,

where σ 2
t = α0 + α1a2

t−1 + · · · + αma2
t−m can be evaluated recursively.

In some applications, it is more appropriate to assume that εt follows a heavy-
tailed distribution such as a standardized Student-t distribution. Let xv be a Student-t
distribution with v degrees of freedom. Then Var(xv) = v/(v− 2) for v > 2, and we
use εt = xv/

√
v/(v − 2). The probability density function of εt is

f (εt | v) = �((v + 1)/2)

�(v/2)
√
(v − 2)π

(
1 + ε2

t

v − 2

)−(v+1)/2

, v > 2, (3.7)
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where �(x) is the usual Gamma function [i.e., �(x) = ∫∞
0 yx−1e−ydy]. Using at =

σtεt , we obtain the conditional likelihood function of at s as

f (am+1, . . . , aT | α, Am)

=
T∏

t=m+1

�((v + 1)/2)

�(v/2)
√
(v − 2)π

1

σt

[
1 + a2

t

(v − 2)σ 2
t

]−(v+1)/2

,

where v > 2 and Am = (a1, a2, . . . , am). We refer to the estimates that maximize the
prior likelihood function as the conditional MLE under t-distribution. The degrees of
freedom of the t-distribution can be specified a priori or estimated jointly with other
parameters. A value between 3 and 6 is often used if it is prespecified.

If the degrees of freedom v of Student-t distribution is prespecified, then the con-
ditional log likelihood function is

�(am+1, . . . , aT | α, Am) = −
T∑

t=m+1

[
v + 1

2
ln

(
1 + a2

t

(v − 2)σ 2
t

)
+ 1

2
ln(σ 2

t )

]
.

(3.8)

If one wishes to estimate v jointly with other parameters, then the log likelihood
function involving degrees of freedom

�(am+1, . . . , aT | α, v, Am)

= (T − m)[ln(�((v + 1)/2))− ln(�(v/2))− 0.5 ln((v − 2)π)]
+ �(am+1, . . . , aT | α, Am),

where the second term is given in Eq. (3.8).

Model Checking
For an ARCH model, the standardized shocks

ãt = at

σt

are iid random variates following either a standard normal or standardized Student-t
distribution. Therefore, one can check the adequacy of a fitted ARCH model by
examining the series {ãt }. In particular, the Ljung–Box statistics of ãt can be used to
check the adequacy of the mean equation and that of ã2

t can be used to test the validity
of the volatility equation. The skewness, kurtosis, and quantile-to-quantile plot (i.e.,
QQ-plot) of {ãt } can be used to check the validity of the distribution assumption.

Forecasting
Forecasts of the ARCH model in Eq. (3.5) can be obtained recursively as those of an
AR model. Consider an ARCH(m) model. At the forecast origin h, the 1-step ahead



90 CONDITIONAL HETEROSCEDASTIC MODELS

forecast of σ 2
h+1 is

σ 2
h (1) = α0 + α1a2

h + · · · + αma2
h+1−m .

The 2-step ahead forecast is

σ 2
h (2) = α0 + α1σ

2
h (1)+ α2a2

h + · · · + αma2
h+2−m ,

and the �-step ahead forecast for σ 2
h+� is

σ 2
h (�) = α0 +

m∑
i=1

αiσ
2
h (�− i), (3.9)

where σ 2
h (�− i) = a2

h+�−i if �− i ≤ 0.

3.3.4 Examples

In this subsection, we illustrate ARCH modeling by considering two examples.

Example 3.1. We first apply the modeling procedure to build a simple
ARCH model for the monthly log stock returns of Intel Corporation. The sample
ACF and PACF of the squared returns in Figure 3.1 clearly show the existence of
conditional heteroscedasticity. Thus, it is unnecessary to perform any statistical tests
to confirm the need of ARCH modeling, and we proceed to identify the order of an
ARCH model. The sample PACF in the lower right panel of Figure 3.1 indicates that
an ARCH(3) model might be appropriate. Consequently, we specify the model

rt = µ+ at , at = σtεt , σ 2
t = α0 + α1a2

t−1 + α2a2
t−2 + α3a2

t−3

for the monthly log returns of Intel stock. Assuming that εt are iid standard normal,
we obtain the fitted model

rt = 0.0196 + at , σ 2
t = 0.0090 + 0.2973a2

t−1 + 0.0900a2
t−2 + 0.0626a2

t−3,

where the standard errors of the parameters are 0.0062, 0.0013, 0.0887, 0.0645,
and 0.0777, respectively. While the estimates meet the general requirement of an
ARCH(3) model, the estimates of α2 and α3 appear to be statistically nonsignificant
at the 5% level. Therefore, the model can be simplified.

Dropping the two nonsignificant parameters, we obtain the model

rt = 0.0213 + at , σ 2
t = 0.00998 + 0.4437a2

t−1, (3.10)

where the standard errors of the parameters are 0.0062, 0.00124, and 0.0938, respec-
tively. All the estimates are highly significant. Figure 3.4 shows the standardized
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Figure 3.4. Model checking statistics of the Gaussian ARCH(1) model in Eq. (3.10) for the
monthly log stock returns of Intel from January 1973 to December 1997: parts (a), (b), and
(c) show the sample ACF of the standardized shocks, their squared series, and absolute series,
respectively, and (d) is the time plot of standardized shocks.

shocks and the sample ACF of some functions of the standardized shocks. The
Ljung–Box statistics of the standardized shocks {ãt } give Q(10) = 12.53 with p
value 0.25 and those of {ã2

t } give Q(10) = 17.23 with p value 0.07. Consequently,
the ARCH(1) model in Eq. (3.10) is adequate for the data at the 5% significance
level.

The ARCH(1) model in Eq. (3.10) has some interesting properties. First, the
expected monthly log return for Intel stock is about 2.1%, which is remarkable. Sec-
ond, α̂2

1 = 0.4442 < 1/3 so that the unconditional fourth moment of the monthly log
return of Intel stock exists. Third, the unconditional variance of rt is 0.00998/(1 −
0.4437) = 0.0179. Finally, the ARCH(1) model can be used to predict the monthly
volatility of Intel stock returns.

t Innovation
For comparison, we also fit an ARCH(1) model to the series, assuming that εt follows
a standardized Student-t distribution with 5 degrees of freedom. The resulting model
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is

rt = 0.0222 + at , σ 2
t = 0.0121 + 0.3029a2

t−1, (3.11)

where the standard errors of the parameters are 0.0019, 0.1443, and 0.0061, respec-
tively. All the estimates are significant at the 5% level, but the t ratio of α̂1 is only
2.10. The unconditional variance of at is 0.0121/(1 − 0.3029) = 0.0174, which is
close to that obtained under normality. The Ljung–Box statistics of the standardized
shocks give Q(10) = 13.66 with p-value 0.19, confirming that the mean equation
is adequate. However, the Ljung–Box statistics for the squared standardized shocks
show Q(10) = 23.83 with p value 0.008. The volatility equation is inadequate at the
5% level. We refine the model by considering an ARCH(2) model and obtain

rt = 0.0225 + at . σ 2
t = 0.0113 + 0.226a2

t−1 + 0.108a2
t−2, (3.12)

where the standard errors of the parameters are 0.006, 0.002, 0.135, and 0.094,
respectively. The coefficient of a2

t−1 is marginally significant at the 10% level, but
that of a2

t−2 is only slightly greater than its standard error. The Ljung–Box statistics
for the squared standardized shocks give Q(10) = 8.82 with p value 0.55. Conse-
quently, the fitted ARCH(2) model appears to be adequate.

Comparing models (3.10), (3.11), and (3.12), we see that (a) using a heavy-tailed
distribution for εt reduces the ARCH effect, and (b) the difference among the three
models is small for this particular instance. Finally, a more appropriate conditional
heteroscedastic model for this data set is a GARCH(1, 1) model, which is discussed
in the next section.

Example 3.2. Consider the percentage changes of the exchange rate between
Mark and Dollar in 10-minute intervals. The data are shown in Figure 3.2(a). As
shown in Figure 3.3(a), the series has no serial correlations. However, the sample
PACF of the squared series a2

t shows some big spikes, especially at lags 1 and 3.
There are some large PACF at higher lags, but the lower order lags tend to be more
important. Following the procedure discussed in the previous subsection, we specify
an ARCH(3) model for the series. Using the conditional Gaussian likelihood func-
tion, we obtain the fitted model

σ 2
t = 0.22 × 10−6 + 0.328a2

t−1 + 0.073a2
t−2 + 0.103a2

t−3,

where all the estimates are statistically significant at the 5% significant level, and
the standard errors of the parameters are 0.46 × 10−8, 0.0162, 0.0160, and 0.0147,
respectively. Model checking, using the standardized shock ãt , indicates that the
model is adequate.

Remark: The estimation of conditional heteroscedastic models of this chapter
is carried out by the Regression Analysis of Time Series (RATS) package. There are
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other softwares available, including Eviews, Scientific Computing Associates (SCA),
and S-Plus.

3.4 THE GARCH MODEL

Although the ARCH model is simple, it often requires many parameters to ade-
quately describe the volatility process of an asset return. For instance, consider the
monthly excess returns of S&P 500 index. An ARCH(9) model is needed for the
volatility process. Some alternative model must be sought. Bollerslev (1986) pro-
poses a useful extension known as the generalized ARCH (GARCH) model. For a
log return series rt , we assume that the mean equation of the process can be ade-
quatedly described by an ARMA model. Let at = rt −µt be the mean-corrected log
return. Then at follows a GARCH(m, s) model if

at = σtεt , σ 2
t = α0 +

m∑
i=1

αi a
2
t−i +

s∑
j=1

β jσ
2
t− j , (3.13)

where again {εt } is a sequence of iid random variables with mean 0 and variance 1.0,
α0 > 0, αi ≥ 0, β j ≥ 0, and

∑max(m,s)
i=1 (αi + βi ) < 1. Here it is understood that

αi = 0 for i > m and β j = 0 for j > s. The latter constraint on αi + βi implies that
the unconditional variance of at is finite, whereas its conditional variance σ 2

t evolves
over time. As before, εt is often assumed to be a standard normal or standardized
Student-t distribution. Equation (3.13) reduces to a pure ARCH(m) model if s = 0.

To understand properties of GARCH models, it is informative to use the following
representation. Let ηt = a2

t − σ 2
t so that σ 2

t = a2
t − ηt . By plugging σ 2

t−i = a2
t−i −

ηt−i (i = 0, . . . , s) into Eq. (3.13), we can rewrite the GARCH model as

a2
t = α0 +

max(m,s)∑
i=1

(αi + βi )a
2
t−i + ηt −

s∑
j=1

β jηt− j . (3.14)

It is easy to check that {ηt } is a martingale difference series [i.e., E(ηt ) = 0 and
cov(ηt , ηt− j ) = 0 for j ≥ 1]. However, {ηt } in general is not an iid sequence. Equa-
tion (3.14) is an ARMA form for the squared series a2

t . Thus, a GARCH model can
be regarded as an application of the ARMA idea to the squared series a2

t . Using the
unconditional mean of an ARMA model, we have

E(a2
t ) = α0

1 −∑max(m,s)
i=1 (αi + βi )

provided that the denominator of the prior fraction is positive.
The strengths and weaknesses of GARCH models can easily be seen by focusing

on the simplest GARCH(1, 1) model with
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σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1, 0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1. (3.15)

First, a large a2
t−1 or σ 2

t−1 gives rise to a large σ 2
t . This means that a large a2

t−1
tends to be followed by another large a2

t , generating, again, the well-known behavior
of volatility clustering in financial time series. Second, it can be shown that if 1 −
2α2

1 − (α1 + β1)
2 > 0, then

E(a4
t )

[E(a2
t )]2

= 3[1 − (α1 + β1)
2]

1 − (α1 + β1)2 − 2α2
1

> 3.

Consequently, similar to ARCH models, the tail distribution of a GARCH(1, 1) pro-
cess is heavier than that of a normal distribution. Third, the model provides a simple
parametric function that can be used to describe the volatility evolution.

Forecasts of a GARCH model can be obtained using methods similar to those of
an ARMA model. Consider the GARCH(1, 1) model in Eq. (3.15) and assume that
the forecast origin is h. For 1-step ahead forecast, we have

σ 2
h+1 = α0 + α1a2

h + β1σ
2
h ,

where ah and σ 2
h are known at the time index h. Therefore, the 1-step ahead forecast

is

σ 2
h (1) = α0 + α1a2

h + β1σ
2
h .

For multistep ahead forecasts, we use a2
t = σ 2

t ε
2
t and rewrite the volatility equation

in Eq. (3.15) as

σ 2
t+1 = α0 + (α1 + β1)σ

2
t + α1σ

2
t (ε

2
t − 1).

When t = h + 1, the equation becomes

σ 2
h+2 = α0 + (α1 + β1)σ

2
h+1 + α1σ

2
h+1(ε

2
h+1 − 1).

Since E(ε2
h+1 −1 | Fh) = 0, the 2-step ahead volatility forecast at the forecast origin

h satisfies the equation

σ 2
h (2) = α0 + (α1 + β1)σ

2
h (1).

In general, we have

σ 2
h (�) = α0 + (α1 + β1)σ

2
h (�− 1), � > 1. (3.16)

This result is exactly the same as that of an ARMA(1, 1)model with AR polynomial
1 − (α1 + β1)B. By repeated substitutions in Eq. (3.16), we obtain that the �-step
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ahead forecast can be written as

σ 2
h (�) = α0[1 − (α1 + β1)

�−1]
1 − α1 − β1

+ (α1 + β1)
�−1σ 2

h (1).

Therefore,

σ 2
h (�) → α0

1 − α1 − β1
, as � → ∞

provided that α1 + β1 < 1. Consequently, the multistep ahead volatility forecasts of
a GARCH(1, 1) model converge to the unconditional variance of at as the forecast
horizon increases to infinity provided that Var(at ) exists.

The literature on GARCH models is enormous; see Bollerslev, Chou, and Kroner
(1992), Bollerslev, Engle, and Nelson (1994), and the references therein. The model
encounters the same weaknesses as the ARCH model. For instance, it responds
equally to positive and negative shocks. In addition, recent empirical studies of high-
frequency financial time series indicate that the tail behavior of GARCH models
remains too short even with standardized Student-t innovations.

3.4.1 An Illustrative Example

The modeling procedure of ARCH models can also be used to build a GARCH
model. However, specifying the order of an GARCH model is not easy. Only
lower order GARCH models are used in most applications, say GARCH(1, 1),
GARCH(2, 1), and GARCH(1, 2) models. The conditional maximum likelihood
method continues to apply provided that the starting values of the volatility {σ 2

t } are
assumed to be known. Consider, for instance, a GARCH(1, 1)model. If σ 2

1 is treated
as fixed, then σ 2

t can be computed recursively for a GARCH(1, 1) model. In some
applications, the sample variance of at serves as a good starting value of σ 2

1 . The
fitted model can be checked by using the standardized residual ãt = at/σt and its
squared process.

Example 3.3. In this example, we consider the monthly excess returns of
S&P 500 index starting from 1926 for 792 observations. The series is shown in Fig-
ure 3.5. Denote the excess return series by rt . Figure 3.6 shows the sample ACF of rt

and the sample PACF of r2
t . The rt series has some serial correlations at lags 1 and

3, but the key feature is that the PACF of r2
t shows strong linear dependence. If an

MA(3) model is entertained, we obtain

rt = 0.0062 + at + 0.0944at−1 − 0.1407at−3, σ̂a = 0.0576

for the series, where all of the coefficients are significant at the 5% level. However,
for simplicity, we use instead an AR(3) model

rt = φ1rt−1 + φ2rt−2 + φ3rt−3 + β0 + at .
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Figure 3.5. Time series plot of the monthly excess returns of S&P 500 index.
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Figure 3.6. (a) Sample ACF of the monthly excess returns of S&P 500 index, and (b) sample
PACF of the squared monthly excess returns.
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The fitted AR(3) model, under the normality assumption, is

rt = 0.088rt−1 − 0.023rt−2 − 0.123rt−3 + 0.0066 + at , σ̂ 2
a = 0.00333. (3.17)

For the GARCH effects, we use the GARCH(1, 1) model

at = σtεt , σ 2
t = α0 + β1σ

2
t−1 + α1a2

t−1.

A joint estimation of the AR(3)-GARCH(1, 1) model gives

rt = 0.021rt−1 − 0.034rt−2 − 0.013rt−3 + 0.0085 + at

σ 2
t = 0.000099 + 0.8476σ 2

t−1 + 0.1219a2
t−1.

From the volatility equation, the implied unconditional variance of at is

0.000099

1 − 0.8476 − 0.1219
= 0.00325,

which is very close to that of Eq. (3.17). However, t ratios of the parameters in
the mean equation suggest that all AR coefficients are insignificant at the 5% level.
Therefore, we refine the model by dropping all AR coefficients. The refined model
is

rt = 0.0065 + at , σ 2
t = 0.00014 + 0.8220σ 2

t−1 + 0.1352a2
t−1. (3.18)

The standard error of the parameter in the mean equation is 0.0015, whereas those
of the parameters in the volatility equation are 0.00002, 0.0208, and 0.0166, respec-
tively. The unconditional variance of at is 0.0001/(1 − 0.822 − 0.1352) = 0.00324.
This is a simple stationary GARCH(1, 1) model. Figure 3.7 shows the estimated
volatility process and the standardized shocks ãt = at/σt for the GARCH(1, 1)
model in Eq. (3.18). The ãt series looks like a white noise process. Figure 3.8 pro-
vides the sample ACF of the standardized shocks ãt and the squared process ã2

t .
These ACFs fail to suggest any significant serial correlations in the two processes.
More specifically, we have Q(10) = 10.32(0.41) and Q(20) = 22.66(0.31) for ãt ,
and Q(10) = 8.83(0.55) and Q(20) = 15.82(0.73) for ã2

t , where the number in
parentheses is the p value of the test statistic. Thus, the model appears to be ade-
quate. Note that the fitted model shows α̂1 + β̂1 = 0.9572, which is close to 1. This
phenomenon is commonly observed in practice and it leads to imposing the con-
straint α1 +β1 = 1 in a GARCH(1, 1)model, resulting in an integrated GARCH (or
IGARCH) model; see Section 3.5.

Finally, to forecast the volatility of monthly excess returns of S&P500 index, we
can use the volatility equation in Eq. (3.18). For instance, at the forecast origin h, we
have σ 2

h+1 = 0.00014 + 0.822σ 2
h + 0.1352a2

h . The 1-step ahead forecast is then
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Figure 3.7. (a) Time series plot of estimated volatility for the monthly excess returns of S&P
500 index, and (b) the standardized shocks of the monthly excess returns of S&P 500 index.
Both plots are based on the GARCH(1, 1) model in Eq. (3.18).

σ 2
h (1) = 0.00014 + 0.822σ 2

h + 0.1352a2
h,

where ah is the residual of the mean equation at time h and σ 2
h is obtained from

the volatility equation. The starting value σ 2
0 is fixed at either zero or the uncon-

ditional variance of at . For multistep ahead forecasts, we use the recursive for-
mula in Eq. (3.16). Table 3.1 shows some mean and volatility forecasts for the
monthly excess return of S&P500 index with forecast origin h = 792 based on
the GARCH(1, 1) model in Eq. (3.18).

t Innovation
Assuming that εt follows a standardized Student-t distribution with 5 degrees of
freedom, we reestimate the GARCH(1, 1) model and obtain

rt = 0.0085 + at , σ 2
t = 0.00018 + 0.1272a2

t−1 + 0.8217σ 2
t−1, (3.19)

where the standard errors of the parameters are 0.0014, 0.55×10−4, 0.0349, and
0.0382, respectively. This model is essentially an IGARCH(1, 1)model as α̂1 + β̂1 ≈
0.96, which is close to 1. The Ljung–Box statistics of the standardized residuals give
Q(10) = 10.45 with p value 0.40 and those of the {ã2

t } series give Q(10) = 9.33
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Figure 3.8. Model checking of the GARCH(1, 1) model in Eq. (3.18) for monthly excess
returns of S&P 500 index: (a) Sample ACF of standardized shocks, and (b) sample ACF of the
squared standardized shocks.

with p value 0.50. Thus, the fitted GARCH(1, 1) model with Student-t distribution
is adequate.

Estimation of Degrees of Freedom
If we further extend the GARCH(1, 1) model by estimating the degrees of freedom
of the Student-t distribution used, we obtain the model

rt = 0.0083 + at , σ 2
t = 0.00017 + 0.1227a2

t−1 + 0.8193σ 2
t−1, (3.20)

Table 3.1. Volatility Forecasts for the Monthly Excess Returns of S&P500 Index. The
Forecast Origin Is h = 792, Which Corresponds to December, 1991. Here Volatility
Denotes Conditional Variance.

Horizon 1 2 3 4 5 ∞
Return 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065

Volatility 0.00311 0.00312 0.00312 0.00313 0.00314 0.00324
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where the estimated degrees of freedom is 6.51. Standard errors of the estimates
in Eq. (3.20) are close to those in Eq. (3.19). The standard error of the estimated
degrees of freedom is 1.49. Consequently, we cannot reject the hypothesis of using a
standardized Student-t distribution with 5 degrees of freedom at the 5% significance
level.

3.4.2 Forecasting Evaluation

Since the volatility of an asset return is not directly observable, comparing the fore-
casting performance of different volatility models is a challenge to data analysts. In
the literature, some researchers use out-of-sample forecasts and compare the volatil-
ity forecasts σ 2

h (�) with the shock a2
h+� in the forecasting sample to assess the fore-

casting performance of a volatility model. This approach often finds a low correla-
tion coefficient between a2

h+� and σ 2
h (�). However, such a finding is not surprising

because a2
h+� alone is not an adequate measure of the volatility at time index h + �.

Consider the 1-step ahead forecasts. From a statistical point of view, E(a2
h+1 | Fh)

= σ 2
h+1 so that a2

h+1 is a consistent estimate of σ 2
h+1. But it is not an accurate esti-

mate of σ 2
h+1 because a single observation of a random variable with a known mean

value cannot provide an accurate estimate of its variance. Consequently, such an
approach to evaluate forecasting performance of volatility models is strictly speak-
ing not proper. For more information concerning forecasting evaluation of GARCH
models, readers are referred to Andersen and Bollerslev (1998).

3.5 THE INTEGRATED GARCH MODEL

If the AR polynomial of the GARCH representation in Eq. (3.14) has a unit root, then
we have an IGARCH model. Thus, IGARCH models are unit-root GARCH models.
Similar to ARIMA models, a key feature of IGARCH models is that the impact of
past squared shocks ηt−i = a2

t−i − σ 2
t−i for i > 0 on a2

t is persistent.
An IGARCH(1, 1) model can be written as

at = σtεt , σ 2
t = α0 + β1σ

2
t−1 + (1 − β1)a

2
t−1,

where {εt } is defined as before and 1 > β1 > 0. For the monthly excess returns of
S&P 500 index, an estimated IGARCH(1, 1) model is

rt = 0.0067 + at , at = σtεt

σ 2
t = 0.000119 + 0.8059σ 2

t−1 + 0.1941a2
t−1,

where the standard errors of the estimates in the volatility equation are 0.0017,
0.000013, and 0.0144, respectively. The parameter estimates are close to those of
the GARCH(1, 1) model shown before, but there is a major difference between the
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two models. The unconditional variance of at , hence that of rt , is not defined under
the above IGARCH(1, 1) model. This seems hard to justify for an excess return
series. From a theoretical point of view, the IGARCH phenomenon might be caused
by occasional level shifts in volatility. The actual cause of persistence in volatility
deserves a careful investigation.

When α1 + β1 = 1, repeated substitutions in Eq. (3.16) give

σ 2
h (�) = σ 2

h (1)+ (�− 1)α0, � ≥ 1,

where h is the forecast origin. Consequently, the effect of σ 2
h (1) on future volatili-

ties is also persistent, and the volatility forecasts form a straight line with slope α0.
Nelson (1990) studies some probability properties of the volatility process σ 2

t under
an IGARCH model. The process σ 2

t is a martingale for which some nice results are
available in the literature. Under certain conditions, the volatility process is strictly
stationary, but not weakly stationary because it does not have the first two moments.

The case of α0 = 0 is of particular interest in studying the IGARCH(1, 1) model.
In this case, the volatility forecasts are simply σ 2

h (1) for all forecast horizons. This
special IGARCH(1, 1) model is the volatility model used in RiskMetrics, which is
an approach for calculating Value at Risk; see Chapter 7.

3.6 THE GARCH-M MODEL

In finance, the return of a security may depend on its volatility. To model such a phe-
nomenon, one may consider the GARCH-M model, where “M” stands for GARCH
in mean. A simple GARCH(1, 1)-M model can be written as

rt = µ+ cσ 2
t + at , at = σtεt ,

σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1, (3.21)

where µ and c are constant. The parameter c is called the risk premium parameter.
A positive c indicates that the return is positively related to its past volatility. Other
specifications of risk premium have also been used in the literature, including rt =
µ+ cσt + at .

The formulation of the GARCH-M model in Eq. (3.21) implies that there are
serial correlations in the return series rt . These serial correlations are introduced
by those in the volatility process {σ 2

t }. The existence of risk premium is, therefore,
another reason that some historical stock returns have serial correlations.

For illustration, we consider a GARCH(1, 1)-M model for the monthly excess
returns of S&P 500 index from January 1926 to December 1991. The fitted model is

rt = 0.0028 + 1.99σ 2
t + at , σ 2

t = 0.00016 + 0.1328a2
t−1 + 0.8137σ 2

t−1,

where the standard errors for the two parameters in the mean equation are 0.0022
and 0.7425, respectively, and those for the parameters in the volatility equation are
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0.00002, 0.0220, and 0.0192, respectively. The estimated risk premium for the index
return is positive and significant at the 5% level. The idea of risk premium applies to
other GARCH models.

3.7 THE EXPONENTIAL GARCH MODEL

To overcome some weaknesses of the GARCH model in handling financial time
series, Nelson (1991) proposes the exponential GARCH (EGARCH) model. In par-
ticular, to allow for asymmetric effects between positive and negative asset returns,
he considers the weighted innovation

g(εt) = θεt + γ [| εt | − E(| εt |)], (3.22)

where θ and γ are real constants. Both εt and | εt | − E(| εt |) are zero-mean iid
sequences with continuous distributions. Therefore, E[g(εt)] = 0. The asymmetry
of g(εt ) can easily be seen by rewriting it as

g(εt) =
{
(θ + γ )εt − γ E(| εt |) if εt ≥ 0,
(θ − γ )εt − γ E(| εt |) if εt < 0.

Remark: For the standard Gaussian random variable εt , E(| εt |) = √
2/π . For

the standardized Student-t distribution in Eq. (3.7), we have

E(| εt |) = 2
√
v − 2�((v + 1)/2)

(v − 1)�(v/2)
√
π

.

An EGARCH(m, s) model can be written as

at = σtεt , ln(σ 2
t ) = α0 + 1 + β1 B + · · · + βs Bs

1 − α1 B − · · · − αm Bm
g(εt−1), (3.23)

where α0 is a constant, B is the back-shift (or lag) operator such that Bg(εt) =
g(εt−1), and 1 + β1 B + · · · + βs Bs and 1 − α1 B − · · · − αm Bm are polynomials
with zeros outside the unit circle and have no common factors. By outside the unit
circle, we mean that absolute values of the zeros are greater than 1. Again, Eq. (3.23)
uses the usual ARMA parameterization to describe the evolution of the conditional
variance of at . Based on this representation, some properties of the EGARCH model
can be obtained in a similar manner as those of the GARCH model. For instance, the
unconditional mean of ln(σ 2

t ) is α0. However, the model differs from the GARCH
model in several ways. First, it uses logged conditional variance to relax the positive-
ness constraint of model coefficients. Second, the use of g(εt ) enables the model to
respond asymmetrically to positive and negative lagged values of at . Some additional
properties of the EGARCH model can be found in Nelson (1991).
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To better understand the EGARCH model, let us consider the simple model with
order (1, 0)

at = σtεt , (1 − αB) ln(σ 2
t ) = (1 − α)α0 + g(εt−1), (3.24)

where εt s are iid standard normal and the subscript of α1 is omitted. In this case,
E(| εt |) = √

2/π and the model for ln(σ 2
t ) becomes

(1 − αB) ln(σ 2
t ) =

{
α∗ + (θ + γ )εt−1 if εt−1 ≥ 0,

α∗ + (θ − γ )εt−1 if εt−1 < 0,
(3.25)

where α∗ = (1 − α)α0 − √
2/πγ . This is a nonlinear function similar to that of

the threshold autoregressive model (TAR) of Tong (1978, 1990). It suffices to say
that for this simple EGARCH model the conditional variance evolves in a nonlinear
manner depending on the sign of at−1. Specifically, we have

σ 2
t = σ 2α

t−1 exp(α∗)


exp

[
(θ + γ )

at−1√
σ 2

t−1

]
if at−1 ≥ 0,

exp

[
(θ − γ )

at−1√
σ 2

t−1

]
if at−1 < 0.

The coefficients (θ + γ ) and (θ − γ ) show the asymmetry in response to positive
and negative at−1. The model is, therefore, nonlinear if γ �= 0. For higher order
EGARCH models, the nonlinearity becomes much more complicated. Cao and Tsay
(1992) use nonlinear models, including EGARCH models, to obtain multistep ahead
volatility forecasts. We discuss nonlinearity in financial time series in Chapter 4.

3.7.1 An Illustrative Example

Nelson (1991) applies an EGARCH model to the daily excess returns of the value-
weighted market index from the Center for Research in Security Prices from July
1962 to December 1987. The excess returns are obtained by removing monthly Trea-
sury bill returns from the value-weighted index returns, assuming that the Treasury
bill return was constant for each calendar day within a given month. There are 6408
observations. Denote the excess return by rt . The model used is as follows:

rt = φ0 + φ1rt−1 + cσ 2
t + at (3.26)

ln(σ 2
t ) = α0 + ln(1 + wNt )+ 1 + βB

1 − α1 B − α2 B2
g(εt−1),

where σ 2
t is the conditional variance of at given Ft−1, Nt is the number of nontrading

days between trading days t − 1 and t , α0 and w are real parameters, g(εt) is defined
in Eq. (3.22), and εt follows a generalized error distribution with probability density
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Table 3.2. An Estimated AR(1)-EGARCH(2, 1) Model for the Daily Excess Returns of
the Value-Weighted CRSP Market Index: July 1962 to December 1987.

Par. α0 w γ α1 α2 β

Est. −10.06 .183 .156 1.929 −.929 −.978
Err. .346 .028 .013 .015 .015 .006

Par. θ φ0 φ1 c v

Est. −.118 3.5 · 10−4 .205 −3.361 1.576
Err. .009 9.9 · 10−5 .012 2.026 .032

function

f (x) = v exp[−(1/2)| x/λ |v]
λ2(1+1/v)�(1/v)

, −∞ < x < ∞, 0 < v ≤ ∞,

where again �(.) is the gamma function and

λ = [2(−2/v)�(1/v)/�(3/v)]1/2.

Similar to a GARCH-M model, the parameter c in Eq. (3.26) is the risk premium
parameter. Table 3.2 gives the parameter estimates and their standard errors of the
model. The mean equation of model (3.26) has two features that are of interest. First,
it uses an AR(1) model to take care of possible serial correlation in the excess returns.
Second, it uses the volatility σ 2

t as a regressor to account for risk premium. The
estimated risk premium is negative, but statistically insignificant.

3.7.2 Another Example

As another illustration, we consider the monthly log returns of IBM stock from Jan-
uary 1926 to December 1997 for 864 observations. An AR(1)-EGARCH(1, 0)model
is entertained and the fitted model is

rt = 0.0105 + 0.092rt−1 + at , at = σtεt (3.27)

ln(σ 2
t ) = −5.496 + g(εt−1)

1 − 0.856B
,

g(εt−1) = −0.0795εt−1 + 0.2647
[
| εt−1 | −√

2/π
]
, (3.28)

where {εt } is a sequence of independent standard Gaussian random variates. All
parameter estimates are statistically significant at the 5% level. For model check-
ing, the Ljung–Box statistics give Q(10) = 6.31(0.71) and Q(20) = 21.4(0.32)
for the standardized residual process ãt = at/σt and Q(10) = 4.13(0.90) and
Q(20) = 15.93(0.66) for the squared process ã2

t , where again the number in paren-
theses denotes p value. Therefore, there is no serial correlation or conditional het-
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eroscedasticity in the standardized residuals of the fitted model. The prior AR(1)-
EGARCH(1, 0) model is adequate.

From the estimated volatility equation in (3.28) and using
√

2/π ≈ 0.7979, we
obtain the volatility equation as

ln(σ 2
t ) = −1.001 + 0.856 ln(σ 2

t−1)+
{

0.1852εt−1 if εt−1 ≥ 0
−0.3442εt−1 if εt−1 < 0.

Taking antilog transformation, we have

σ 2
t = σ 2×0.856

t−1 e−1.001 ×
{

e0.1852εt−1 if εt−1 ≥ 0
e−0.3442εt−1 if εt−1 < 0.

This equation highlights the asymmetric responses in volatility to the past positive
and negative shocks under an EGARCH model. For example, for a standardized
shock with magnitude 2 (i.e., two standard deviations), we have

σ 2
t (εt−1 = −2)

σ 2
t (εt−1 = 2)

= exp[−0.3442 × (−2)]
exp(0.1852 × 2)

= e0.318 = 1.374.

Therefore, the impact of a negative shock of size two standard deviations is about
37.4% higher than that of a positive shock of the same size. This example clearly
demonstrates the asymmetric feature of EGARCH models. In general, the bigger the
shock, the larger the difference in volatility impact.

3.7.3 Forecasting Using an EGARCH Model

We use the EGARCH(1, 0)model to illustrate multistep ahead forecasts of EGARCH
models, assuming that the model parameters are known and the innovations are stan-
dard Gaussian. For such a model, we have

ln(σ 2
t ) = (1 − α1)α0 + α1 ln(σ 2

t−1)+ g(εt−1),

g(εt−1) = θεt−1 + γ (| εt−1 | −√
2/π).

Taking exponentials, the model becomes

σ 2
t = σ

2α1
t−1 exp[(1 − α1)α0] exp[g(εt−1)],

g(εt−1) = θεt−1 + γ (| εt−1 | −√
2/π). (3.29)

Let h be the forecast origin. For the 1-step ahead forecast, we have

σ 2
h+1 = σ

2α1
h exp[(1 − α1)α0] exp[g(εh)],

where all of the quantities on the right-hand side are known. Thus, the 1-step ahead
volatility forecast at the forecast origin h is simply σ̂ 2

h (1) = σ 2
h+1 given earlier. For
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the 2-step ahead forecast, Eq. (3.29) gives

σ 2
h+2 = σ

2α1
h+1 exp[(1 − α1)α0] exp[g(εh+1)].

Taking conditional expectation at time h, we have

σ̂ 2
h (2) = σ̂

2α1
h (1) exp[(1 − α1)α0]Eh{exp[g(εh+1)]},

where Eh denotes a conditional expectation taking at the time origin h. The prior
expectation can be obtained as follows:

E{exp[g(ε)]} =
∫ ∞

−∞
exp[θε + γ (| ε | −√

2/π)] f (ε)dε

= exp
(
−γ√2/π

) [∫ ∞

0
e(θ+γ )ε

1√
2π

e−ε2/2 dε

+
∫ 0

−∞
e(θ−γ )ε 1√

2π
e−ε2/2 dε

]

= exp
(
−γ√2/π

) [
e(θ+γ )2/2�(θ + γ )+ e(θ−γ )2/2�(γ − θ)

]
,

where f (ε) and �(x) are the probability density function and CDF of the standard
normal distribution, respectively. Consequently, the 2-step ahead volatility forecast
is

σ̂ 2
h (2) = σ̂

2α1
h (1) exp

[
(1 − α1)α0 − γ

√
2/π

]
×
[
exp{(θ + γ )2/2}�(θ + γ )+ exp{(θ − γ )2/2}�(γ − θ)

]
.

Repeating the previous procedure, we obtain a recursive formula for j-step ahead
forecast

σ̂ 2
h ( j) = σ̂

2α1
h ( j − 1) exp(ω)

×
[
exp{(θ + γ )2/2}�(θ + γ )+ exp{(θ − γ )2/2}�(γ − θ)

]
,

where ω = (1 − α1)α0 − γ
√

2/π . The values of �(θ + γ ) and �(θ − γ ) can be
obtained from most statistical packages. Alternatively, accurate approximations to
these values can be obtained by using the method in Appendix B of Chapter 6.

For illustration, consider the AR(1)-EGARCH(1, 0) model of the previous sub-
section for the monthly log returns of IBM stock. Using the fitted EGARCH(1, 0)
model, we can compute the volatility forecasts for the series. At the forecast ori-
gin t = 864, the forecasts are σ̂ 2

864(1) = 6.05 × 10−3, σ̂ 2
864(2) = 5.82 × 10−3,
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σ̂ 2
864(3) = 5.63 × 10−3, and σ̂ 2

864(10) = 4.94 × 10−3. These forecasts converge
gradually to the sample variance 4.37 × 10−3 of the shock process at of Eq. (3.27).

3.8 THE CHARMA MODEL

Many other econometric models have been proposed in the literature to describe the
evolution of the conditional variance σ 2

t in Eq. (3.2). We mention the conditional
heteroscedastic ARMA (CHARMA) model that uses random coefficients to produce
conditional heteroscedasticity; see Tsay (1987). The CHARMA model is not the
same as the ARCH model, but the two models have similar second-order conditional
properties. A CHARMA model is defined as

rt = µt + at , at = δ1t at−1 + δ2t at−2 + · · · + δmt at−m + ηt , (3.30)

where {ηt } is a Gaussian white noise series with mean zero and variance σ 2
η ,

{δt } = {(δ1t , . . . , δmt )
′} is a sequence of iid random vectors with mean zero and

non-negative definite covariance matrix Ω, and {δt } is independent of {ηt }. In this
section, we use some basic properties of vector and matrix operations to simplify the
presentation. Readers may consult Appendix A of Chapter 8 for a brief review of
these properties. For m > 0, the model can be written as

at = a′
t−1δt + ηt ,

where at = (at−1, . . . , at−m)
′ is a vector of lagged values of at and is available at

time t − 1. The conditional variance of at of the CHARMA model in Eq. (3.30) is
then

σ 2
t = σ 2

η + a′
t−1 Cov(δt )at−1

= σ 2
η + (at−1, . . . , at−m)Ω(at−1, . . . , at−m)

′. (3.31)

Denote the (i, j)th element of Ω by ωi j . Because the matrix is symmetric, we have
ωi j = ω j i . If m = 1, then Eq. (3.31) reduces to σ 2

t = σ 2
η + ω11a2

t−1, which is an
ARCH(1) model. If m = 2, then Eq. (3.31) reduces to

σ 2
t = σ 2

η + ω11a2
t−1 + 2ω12at−1at−2 + ω22a2

t−2,

which differs from an ARCH(2) model by the cross-product term at−1at−2. In gen-
eral, the conditional variance of a CHARMA(m) model is equivalent to that of
an ARCH(m) model if Ω is a diagonal matrix. Because Ω is a covariance matrix,
which is non-negative definite, and σ 2

η is a variance, which is positive, we have

σ 2
t ≥ σ 2

η > 0 for all t . In other words, the positiveness of σ 2
t is automatically

satisfied under a CHARMA model.
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An obvious difference between ARCH and CHARMA models is that the latter
use cross-products of the lagged values of at in the volatility equation. The cross-
product terms might be useful in some applications. For example, in modeling an
asset return series, cross-product terms denote interactions between previous returns.
It is conceivable that stock volatility may depend on such interactions. However,
the number of cross-product terms increases rapidly with the order m, and some
constraints are needed to keep the model simple. A possible constraint is to use
a small number of cross-product terms in a CHARMA model. Another difference
between the two models is that higher order properties of CHARMA models are
harder to obtain than those of ARCH models because it is harder to handle random
coefficients than constant coefficients.

For illustration, we employ the CHARMA model

rt = φ0 + at , at = δ1t at−1 + δ2t at−2 + ηt

for the monthly excess returns of S&P 500 index used before in GARCH modeling.
The fitted model is

rt = 0.00635 + at , σ 2
t = 0.00179 + (at−1, at−2)Ω̂(at−1, at−2)

′,

where

Ω̂ =
[

0.1417(0.0333) −0.0594(0.0365)
−0.0594(0.0365) 0.3081(0.0340)

]

and the numbers in parentheses are standard errors. The cross-product term of Ω̂ has
a t ratio of −1.63, which is marginally significant at the 10% level. If we refine the
model to

rt = φ0 + at , at = δ1t at−1 + δ2t at−2 + δ3t at−3 + ηt ,

but assume that δ3t is uncorrelated with (δ1t , δ2t ), then we obtain the fitted model

rt = 0.0068 + at , σ 2
t = .00136 + (at−1, at−2, at−3)Ω̂(at−1, at−2, at−3)

′,

where the elements of Ω̂ and their standard errors, shown in parentheses, are

Σ̂ =
 0.1212(.0355) −0.0622(.0283) 0

−0.0622(.0283) 0.1913(.0254) 0
0 0 0.2988(0.0420)

 .
All of the estimates are now statistically significant at the 5% level. From the model,
at = rt − 0.0068 is the deviation of the monthly excess return from its average. The
fitted CHARMA model shows that there is some interaction effect between the first
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two lagged deviations. Indeed, the volatility equation can be written approximately
as

σ 2
t = 0.00136 + 0.12a2

t−1 − 0.12at−1at−2 + 0.19a2
t−2 + 0.30a2

t−3.

The conditional variance is slightly larger when at−1at−2 is negative.

3.8.1 Effects of Explanatory Variables

The CHARMA model can easily be generalized so that the volatility of rt may
depend on some explanatory variables. Let {xit }m

i=1 be m explanatory variables avail-
able at time t . Consider the model

rt = µt + at , at =
m∑

i=1

δi t xi,t−1 + ηt , (3.32)

where δt = (δ1t , . . . , δmt )
′ and ηt are random vector and variable defined in

Eq. (3.30). Then the conditional variance of at is

σ 2
t = σ 2

η + (x1,t−1, . . . , xm,t−1)Ω(x1,t−1, . . . , xm,t−1)
′.

In application, the explanatory variables may include some lagged values of at .

3.9 RANDOM COEFFICIENT AUTOREGRESSIVE MODELS

In the literature, the random coefficient autoregressive (RCA) model is introduced
to account for variability among different subjects under study, similar to the panel
data analysis in econometrics and the hierarchical model in statistics. We classify
the RCA model as a conditional heteroscedastic model, but historically it is used
to obtain a better description of the conditional mean equation of the process by
allowing for the parameters to evolve over time. A time series rt is said to follow an
RCA(p) model if it satisfies

rt = φ0 +
p∑

i=1

(φi + δi t )rt−i + at , (3.33)

where p is a positive integer, {δt } = {(δ1t , . . . , δpt )
′} is a sequence of independent

random vectors with mean zero and covariance matrix Ωδ , and {δt } is independent
of {at }; see Nicholls and Quinn (1982) for further discussions of the model. The
conditional mean and variance of the RCA model in Eq. (3.33) are

µt = E(at | Ft−1) =
p∑

i=1

φi at−i , σ 2
t = σ 2

a +(rt−1, . . . , rt−p)Ωδ(rt−1, . . . , rt−p)
′,
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which is in the same form as that of a CHARMA model. However, there is a subtle
difference between RCA and CHARMA models. For the RCA model, the volatility
is a quadratic function of the observed lagged values rt−i . Yet the volatility is a
quadratic function of the lagged innovations at−i in a CHARMA model.

3.10 THE STOCHASTIC VOLATILITY MODEL

An alternative approach to describe the volatility evolution of a financial time series
is to introduce an innovation to the conditional variance equation of at ; see Melino
and Turnbull (1990), Harvey, Ruiz, and Shephard (1994) and Jacquier, Polson, and
Rossi (1994). The resulting model is referred to as a stochastic volatility (SV) model.
Similar to EGARCH models, to ensure positiveness of the conditional variance, SV
models use ln(σ 2

t ) instead of σ 2
t . A SV model is defined as

at = σtεt , (1 − α1 B − · · · − αm Bm) ln(σ 2
t ) = α0 + vt , (3.34)

where εt s are iid N (0, 1), vt s are iid N (0, σ 2
v ), {εt } and {vt } are independent, α0 is a

constant, and all zeros of the polynomial 1 −∑m
i=1 αi Bi are greater 1 in modulus.

Introducing the innovation vt substantially increases the flexibility of the model in
describing the evolution of σ 2

t , but it also increases the difficulty in parameter esti-
mation. To estimate a SV model, we need a quasi-likelihood method via Kalman
filtering or a Monte Carlo method. Jacquier, Polson, and Rossi (1994) provide some
comparison of estimation results between quasi-likelihood and Monte Carlo Markov
Chain (MCMC) methods. The difficulty in estimating a SV model is understandable
because for each shock at the model uses two innovations εt and vt . We discuss
a MCMC method to estimate SV models in Chapter 10. For more discussions on
stochastic volatility models, see Taylor (1994).

The appendixes of Jacquier, Polson, and Rossi (1994) provide some properties of
the SV model when m = 1. For instance, with m = 1, we have

ln(σ 2
t ) ∼ N

(
α0

1 − α1
,

σ 2
v

1 − α2
1

)
≡ N (µh, σ

2
h ),

and E(a2
t ) = exp[µh + 1/(2σ 2

h )], E(a4
t ) = 3 exp[2µ2

h + 2σ 2
h ], and corr(a2

t , a2
t−i ) =

[exp(σ 2
h α

i
1) − 1]/[3 exp(σ 2

h ) − 1]. Limited experience shows that SV models often
provided improvements in model fitting, but their contributions to out-of-sample
volatility forecasts received mixed results.

3.11 THE LONG-MEMORY STOCHASTIC VOLATILITY MODEL

More recently, the SV model is further extended to allow for long memory in volatil-
ity, using the idea of fractional difference. As stated in Chapter 2, a time series is a
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Figure 3.9. The sample ACF of daily absolute log returns for the S&P 500 index, and the
IBM stock for the period from July 3, 1962 to December 31, 1997. The two horizontal lines
denote the asymptotic 5% limits.

long-memory process if its autocorrelation function decays at a hyperbolic, instead
of an exponential, rate as the lag increases. The extension to long-memory models in
volatility study is motivated by the fact that autocorrelation function of the squared or
absolute-valued series of an asset return often decays slowly, even though the return
series has no serial correlation; see Ding, Granger, and Engle (1993). Figure 3.9
shows the sample ACF of the daily absolute returns for IBM stock and the S&P 500
index from July 3, 1962 to December 31, 1997. These sample ACFs are positive and
of moderate magnitude, but decay slowly.

A simple long-memory stochastic volatility (LMSV) model can be written as

at = σtεt , σt = σ exp(ut/2), (1 − B)dut = ηt , (3.35)

where σ > 0, εt s are iid N (0, 1), ηt s are iid N (0, σ 2
η ) and independent of εt , and

0 < d < 0.5. The feature of long memory stems from the fractional difference
(1 − B)d , which implies that the ACF of ut decays slowly at a hyperbolic, instead of
an exponential, rate as the lag increases. For model (3.35), we have
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ln(a2
t ) = ln(σ 2)+ ut + ln(ε2

t )

= [ln(σ 2)+ E(ln ε2
t )] + ut + [ln(ε2

t )− E(ln ε2
t )]

≡ µ+ ut + et .

Thus, the ln(a2
t ) series is a Gaussian long-memory signal plus a non-Gaussian

white noise; see Breidt, Crato, and de Lima (1998). Estimation of the long-memory
stochastic volatility model is complicated, but the fractional difference parameter d
can be estimated by using either a quasi-maximum likelihood method or a regres-
sion method. Using the log series of squared daily returns for companies in S&P
500 index, Bollerslev and Jubinski (1999) and Ray and Tsay (2000) found that the
median estimate of d is about 0.38. For applications, Ray and Tsay (2000) study
common long-memory components in daily stock volatilities of groups of compa-
nies classified by various characteristics. They found that companies in the same
industrial or business sector tend to have more common long-memory components
(e.g., big U.S. national banks and financial institutions).

3.12 AN ALTERNATIVE APPROACH

French, Schwert, and Stambaugh (1987) consider an alternative approach for volatil-
ity estimation that uses high-frequency data to calculate volatility of low-frequency
returns. In recent years, this approach has attracted some interest due in part to the
availability of high-frequency financial data, especially in the foreign exchange mar-
kets (e.g., Andersen, Bollerslev, Diebold, and Labys, 1999).

Suppose that we are interested in the monthly volatility of an asset for which
daily returns are available. Let rm

t be the monthly log return of the asset at month t .
Assume that there are n trading days in month t and the daily log returns of the asset
in the month are {rt,i }n

i=1. Using properties of log returns, we have

rm
t =

n∑
i=1

rt,i .

Assuming that the conditional variance and covariance exist, we have

Var(rm
t | Ft−1) =

n∑
i=1

Var(rt,i | Ft−1)+ 2
∑
i< j

Cov[(rt,i , rt, j ) | Ft−1], (3.36)

where Ft−1 denotes the information available at month t − 1 (inclusive). The prior
equation can be simplified if additional assumptions are made. For example, if we
assume that {rt,i } is a white noise series, then

Var(rm
t | Ft−1) = n Var(rt,1),
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where Var(rt,1) can be estimated from the daily returns {rt,i }n
i=1 by

σ̂ 2 =
∑n

i=1(rt,i − r̄t )
n

n − 1
,

where r̄t is the sample mean of the daily log returns in month t (i.e., r̄t =∑n
i=1 rt,i/n). The estimated monthly volatility is then

σ̂ 2
m = n

n − 1

n∑
i=1

(rt,i − r̄t )
2. (3.37)

If {rt,i } follows an MA(1) model, then

Var(rm
t | Ft−1) = n Var(rt,1)+ 2(n − 1)Cov(rt,1, rt,2),

which can be estimated by

σ̂ 2
m = n

n − 1

n∑
i=1

(rt,i − r̄t )
2 + 2

n−1∑
i=1

(rt,i − r̄t )(rt,i+1 − r̄t ). (3.38)

The previous approach for volatility estimation is simple, but it encounters sev-
eral difficulties in practice. First, the model for daily returns {rt,i } is unknown. This
complicates the estimation of covariances in Eq. (3.36). Second, there are roughly
21 trading days in a month, resulting in a small sample size. The accuracy of the
estimates of variance and covariance in Eq. (3.36) might be questionable. The accu-
racy depends on the dynamic structure of {rt,i } and their distribution. If the daily log
returns have high excess kurtosis and serial correlations, then the sample estimates
σ̂ 2

m in Eqs. (3.37) and (3.38) may not even be consistent; see Bai, Russell, and Tiao
(2000). Further research is needed to make this approach valuable.

Example 3.4. Consider the monthly volatility of the log returns of S&P 500
index from January 1980 to December 1999. We calculate the volatility by three
methods. In the first method, we use daily log returns and Eq. (3.37) (i.e., assum-
ing that the daily log returns form a white noise series). The second method also
uses daily returns but assumes an MA(1) model [i.e., using Eq. (3.38)]. The third
method applies a GARCH(1, 1) model to the monthly returns from January 1962 to
December 1999. We use a longer data span to obtain a more accurate estimate of the
monthly volatility. The GARCH(1, 1) model used is

rm
t = 0.658 + at , at = σtεt , σ 2

t = 3.349 + 0.086a2
t−1 + 0.735σ 2

t−1,

where εt is a standard Gaussian white noise series. Figure 3.10 shows the time plots
of the estimated monthly volatility. Clearly the estimated volatilities based on daily
returns are much higher than those based on monthly returns and a GARCH(1, 1)
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(c) Based on a GARCH(1,1) model

Figure 3.10. Time plots of estimated monthly volatility for the log returns of S&P 500 index
from January 1980 to December 1999: (a) assumes that the daily log returns form a white noise
series, (b) assumes that the daily log returns follow an MA(1) model, and (c) uses monthly
returns from January 1962 to December 1999 and a GARCH(1, 1) model.

model. In particular, the estimated volatility for October 1987 was about 680 when
daily returns are used. The plots shown were truncated to have the same scale.

Remark: In Eq. (3.37), if we further assume that the sample mean r̄t is zero,
then we have σ̂ 2

m ≈ ∑n
i=1 r2

t,i . In this case, the cumulative sum of squares of daily
log returns in a month can be used as an estimate of monthly volatility.

3.13 APPLICATION

In this section, we apply the volatility models discussed in this chapter to investigate
some problems of practical importance. The data used are the monthly log returns of
IBM stock and S&P 500 index from January 1926 to December 1999. There are 888
observations, and the returns are in percentages and include dividends. Figure 3.11
shows the time plots of the two return series.
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Figure 3.11. Time plots of monthly log returns for IBM stock and S&P 500 index. The sample
period is from January 1926 to December 1999. The returns are in percentages and include
dividends.

Example 3.5. The questions we address here are whether the daily volatility
of a stock is lower in the Summer and, if so, by how much. Affirmative answers to
these two questions have practical implications in stock option pricing. We use the
monthly log returns of IBM stock shown in Figure 3.11(a) as an illustrative example.

Denote the monthly log return series by rt . If Gaussian GARCH models are enter-
tained, we obtain the GARCH(1, 1) model

rt = 1.23 + 0.099rt−1 + at , at = σtεt

σ 2
t = 3.206 + 0.103a2

t−1 + 0.825σ 2
t−1, (3.39)

for the series. The standard errors of the two parameters in the mean equation are
0.222 and 0.037, respectively, whereas those of the parameters in the volatility equa-
tion are 0.947, 0.021, and 0.037, respectively. Using the standardized residuals ãt =
at/σt , we obtain Q(10) = 7.82(0.553) and Q(20) = 21.22(0.325), where p value is
in parentheses. Therefore, there are no serial correlations in the residuals of the mean
equation. The Ljung–Box statistics of the ã2

t series show Q(10) = 2.89(0.98) and
Q(20) = 7.26(0.99), indicating that the standardized residuals have no conditional
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heteroscedasticity. The fitted model seems adequate. This model serves as a starting
point for further study.

To study the Summer effect on stock volatility of an asset, we define an indicator
variable

ut =
{

1 if t is June, July, or August
0 otherwise

(3.40)

and modify the volatility equation to

σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1 + ut (α00 + α10a2

t−1 + β10σ
2
t−1).

This equation uses two GARCH(1, 1) models to describe the volatility of a stock
return; one model for the Summer months and the other for the remaining months.
For the monthly log returns of IBM stock, estimation results show that the estimates
of α10 and β10 are statistically nonsignificance at the 10% level. Therefore, we refine
the equation and obtain the model

rt = 1.21 + 0.099rt−1 + at , at = σtεt

σ 2
t = 4.539 + 0.113a2

t−1 + 0.816σ 2
t−1 − 5.154ut . (3.41)

The standard errors of the parameters in the mean equation are 0.218 and 0.037,
respectively, and those of the parameters in the volatility equation are 1.071, 0.022,
0.037, and 1.900, respectively. The Ljung–Box statistics for the standardized residu-
als ãt = at/σt show Q(10) = 7.66(0.569) and Q(20) = 21.64(0.302). Therefore,
there are no serial correlations in the standardized residuals. The Ljung–Box statis-
tics for ã2

t give Q(10) = 3.38(0.97) and Q(20) = 6.82(0.99), indicating no con-
ditional heteroscedasticity in the standardized residuals, either. The refined model
seems adequate.

Comparing the volatility models in Eqs. (3.39) and (3.41), we obtain the following
conclusions. First, because the coefficient −5.514 is significantly different from zero
with p value 0.0067, the Summer effect on stock volatility is statistically significant
at the 1% level. Furthermore, the negative sign of the estimate confirms that the
volatility of IBM monthly log stock returns is indeed lower during the Summer.
Second, rewrite the volatility model in Eq. (3.41) as

σ 2
t =

{−0.615 + 0.113a2
t−1 + 0.816σ 2

t−1 if t is June, July, or August
4.539 + 0.113a2

t−1 + 0.816σ 2
t−1, otherwise.

The negative constant term −0.615 = 4.539 − 5.514 is counterintuitive. However,
since the standard errors of 4.539 and 5.514 are relatively large, the estimated differ-
ence −0.615 might not be significantly different from zero. To verify the assertion,
we refit the model by imposing the constraint that the constant term of the volatil-
ity equation is zero for the Summer months. This can easily be done by using the
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equation

σ 2
t = α1a2

t−1 + β1σ
2
t−1 + γ (1 − ut ).

The fitted model is

rt = 1.21 + 0.099rt−1 + at , at = σtεt

σ 2
t = 0.114a2

t−1 + 0.811σ 2
t−1 + 4.552(1 − ut ). (3.42)

The standard errors of the parameters in the mean equation are 0.219 and 0.038,
respectively, and those of the parameters in the volatility equation are 0.022, 0.034,
and 1.094, respectively. The Ljung–Box statistics of the standardized residuals show
Q(10) = 7.68 and Q(20) = 21.67 and those of the ã2

t series give Q(10) = 3.17
and Q(20) = 6.85. These test statistics are close to what we had before and are not
significant at the 5% level.

The volatility Eq. (3.42) can readily be used to assess the Summer effect on the
IBM stock volatility. For illustration, based on the model in Eq. (3.42), the medians
of a2

t and σ 2
t are 29.4 and 75.1, respectively, for the IBM monthly log returns in

1999. Using these values, we have σ 2
t = 0.114 × 29.4 + 0.811 × 75.1 = 64.3 for the

Summer months and σ 2
t = 68.8 for the other months. Ratio of the two volatilities is

64.3/68.8 ≈ 93%. Thus, there is a 7% reduction in the volatility of the monthly log
return of IBM stock in the Summer months.

Example 3.6. The S&P 500 index is widely used in the derivative markets.
As such, modeling its volatility is a subject of intensive study. The question we ask
in this example is whether the past returns of individual components of the index
contribute to the modeling of the S&P 500 index volatility in the presence of its own
returns. A thorough investigation on this topic is beyond the scope of this chapter, but
we use the past returns of IBM stock as explanatory variables to address the question.

The data used are shown in Figure 3.11. Denote by rt the monthly log return series
of S&P 500 index. Using the rt series and Gaussian GARCH models, we obtain the
following special GARCH(2, 1) model

rt = 0.609 + at , at = σtεt , σ 2
t = 0.717 + 0.147a2

t−2 + 0.839σ 2
t−1. (3.43)

The standard error of the constant term in the mean equation is 0.138 and those of
the parameters in the volatility equation are 0.214, 0.021, and 0.017, respectively.
Based on the standardized residuals ãt = at/σt , we have Q(10) = 11.51(0.32) and
Q(20) = 23.71(0.26), where the number in parentheses denotes p value. For the
ã2

t series, we have Q(10) = 9.42(0.49) and Q(20) = 13.01(0.88). Therefore, the
model seems adequate at the 5% significance level.

Next we evaluate the contributions, if any, of using the past returns of IBM stock,
which is a component of the S&P 500 index, in modeling the index volatility. As a
simple illustration, we modify the volatility equation as

σ 2
t = α0 + α2a2

t−2 + β1σ
2
t−1 + γ (xt−1 − 1.24)2,
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Table 3.3. Fitted Volatilities for the Monthly Log Returns of the S&P 500 Index from
July to December 1999 Using Models with and without the Past Log Return of IBM
Stock.

Month 7/99 8/99 9/99 10/99 11/99 12/99

Model (3.43) 26.30 26.01 24.73 21.69 20.71 22.46

Model (3.44) 23.32 23.13 22.46 20.00 19.45 18.27

where xt is the monthly log return of IBM stock and 1.24 is the sample mean of xt .
The fitted model for rt becomes

rt = 0.616 + at , at = σtεt ,

σ 2
t = 1.069 + 0.148a2

t−2 + 0.834σ 2
t−1 − 0.007(xt−1 − 1.24)2. (3.44)

The standard error of the parameter in the mean equation is 0.139 and those of the
parameters in the volatility equation are 0.271, 0.020, 0.018, and 0.002, respectively.
For model checking, we have Q(10) = 11.39(0.33) and Q(20) = 23.63(0.26)
for the standardized residuals ãt = at/σt and Q(10) = 9.35(0.50) and Q(20) =
13.51(0.85) for the ã2

t series. Therefore, the model is adequate.
Since the p value for testing γ = 0 is 0.0039, the contribution of the lag-1 IBM

stock return to the S&P 500 index volatility is statistically significant at the 1% level.
The negative sign is understandable because it implies that using the lag-1 past return
of IBM stock reduces the volatility of the S&P 500 index return. Table 3.3 gives the
fitted volatility of S&P 500 index from July to December of 1999 using models (3.43)
and (3.44). From the table, the past value of IBM log stock return indeed contributes
to the modeling of the S&P 500 index volatility.

3.14 KURTOSIS OF GARCH MODELS

Uncertainty in volatility estimation is an important issue, but it is often overlooked.
To assess the variability of an estimated volatility, one must consider the kurtosis of
a volatility model. In this section, we derive the excess kurtosis of a GARCH(1, 1)
model. The same idea applies to other GARCH models, however. The model consid-
ered is

at = σtεt , σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1,

where α0 > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1, and {εt } is an iid sequence satisfying

E(εt ) = 0, Var(εt ) = 1, E(ε4
t ) = Kε + 3,
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where Kε is the excess kurtosis of the innovation εt . Based on the assumption, we
have

• Var(at ) = E(σ 2
t ) = α0/[1 − (α1 + β1)].

• E(a4
t ) = (Kε + 3)E(σ 4

t ) provided that E(σ 4
t ) exists.

Taking the square of the volatility model, we have

σ 4
t = α2

0 + α2
1a4

t−1 + β2
1σ

4
t−1 + 2α0α1a2

t−1 + 2α0β1σ
2
t−1 + 2α1β1σ

2
t−1a2

t−1.

Taking expectation of the equation and using the two properties mentioned earlier,
we obtain

E(σ 4
1 ) = α2

0(1 + α1 + β1)

[1 − (α1 + β1)][1 − α2
1(Kε + 2)− (α1 + β1)2]

provided that 1 > α1 + β1 ≥ 0 and 1 − α2
1(Kε + 2)− (α1 + β1)

2 > 0. The excess
kurtosis of at , if it exists, is then

Ka = E(a4
t )

[E(a2
t )]2

− 3

= (Kε + 3)[1 − (α1 + β1)
2]

1 − 2α2
1 − (α1 + β1)2 − Kεα2

1

− 3.

This excess kurtosis can be written in an informative expression. First, consider
the case that εt is normally distributed. In this case, Kε = 0, and some algebra shows
that

K (g)
a = 6α2

1

1 − 2α2
1 − (α1 + β1)2

,

where the superscript (g) is used to denote Gaussian distribution. This result has two
important implications: (a) the kurtosis of at exists if 1 − 2α2

1 − (α1 + β1)
2 > 0, and

(b) if α1 = 0, then K (g)
a = 0, meaning that the corresponding GARCH(1, 1) model

does not have heavy tails.
Second, consider the case that εt is not Gaussian. Using the prior result, we have

Ka = Kε − Kε(α1 + β1)+ 6α2
1 + 3Kεα2

1

1 − 2α2
1 − (α1 + β1)2 − Kεα2

1

= Kε[1 − 2α2
1 − (α1 + β1)

2] + 6α2
1 + 5Kεα2

1

1 − 2α2
1 − (α1 + β1)2 − Kεα2

1
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= Kε + K (g)
a + 5

6 KεK (g)
a

1 − 1
6 KεK (g)

a

.

This result was obtained originally by George C. Tiao; see Bai, Russell, and Tiao
(2001). It holds for all GARCH models provided that the kurtosis exists. For instance,
if β1 = 0, then the model reduces to an ARCH(1) model. In this case, it is easy to
verify that K (g)

a = 6α2
1/(1 − 3α2

1) provided that 1 > 3α2
1 and the excess kurtosis of

at is

Ka = (Kε + 3)(1 − α2
1)

1 − (Kε + 3)α2
1

− 3 = Kε + 2Kεα2
1 + 6α2

1

1 − 3α2
1 − Kεα2

1

= Kε(1 − 3α2
1)+ 6α2

1 + 5Kεα2
1

1 − 3α2
1 − Kεα2

1

= Kε + K (g)
a + 5

6 KεK (g)
a

1 − 1
6 KεK (g)

a

.

The prior result shows that for a GARCH(1, 1) model the coefficient α1 plays a
critical role in determining the tail behavior of at . If α1 = 0, then K (g)

a = 0 and
Ka = Kε . In this case, the tail behavior of at is similar to that of the standardized
noise εt . Yet if α1 > 0, then K (g)

a > 0 and the at process has heavy tails.
For a (standardized) Student-t distribution with v degrees of freedom, we have

E(ε4
t ) = 6/(v−4)+3 if v > 4. Therefore, the excess kurtosis of εt is Kε = 6/(v−4)

for v > 4. This is part of the reason that we used t5 in the chapter when the degrees of
freedom of t distribution are prespecified. The excess kurtosis of at becomes Ka =
[6+(v+1)K (g)

a ]/[v−4−K (g)
a ] provided that 1−2α2

1(v−1)/(v−4)−(α1+β1)
2 > 0.

APPENDIX A. SOME RATS PROGRAMS FOR ESTIMATING
VOLATILITY MODELS

The data file used in the illustration is “sp500.dat,” which contains the monthly
excess returns of S&P 500 index with 792 observations. Comments in a RATS pro-
gram start with “*”.

A. A Gaussian GARCH(1, 1) Model with a Constant Mean Equation

all 0 792:1
open data sp500.dat
data(org=obs) / rt
*** initialize the conditional variance function
set h = 0.0
*** specify the parameters of the model
nonlin mu a0 a1 b1
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*** specify the mean equation
frml at = rt(t)-mu
*** specify the volatility equation
frml gvar = a0+a1*at(t-1)**2+b1*h(t-1)
*** specify the log likelihood function
frml garchln = -0.5*log(h(t)=gvar(t))-0.5*at(t)**2/h(t)
*** sample period used in estimation
smpl 2 792
*** initial estimates
compute a0 = 0.01, a1 = 0.1, b1 = 0.5, mu = 0.1
maximize(method=bhhh,recursive,iterations=150) garchln
set fv = gvar(t)
set resid = at(t)/sqrt(fv(t))
set residsq = resid(t)*resid(t)
*** Checking standardized residuals
cor(qstats,number=20,span=10) resid
*** Checking squared standardized residuals
cor(qstats,number=20,span=10) residsq

B. A GARCH(1, 1) Model with Student-t Innovation

all 0 792:1
open data sp500.dat
data(org=obs) / rt
set h = 0.0
nonlin mu a0 a1 b1 v
frml at = rt(t)-mu
frml gvar = a0+a1*at(t-1)**2+b1*h(t-1)
frml tt = at(t)**2/(h(t)=gvar(t))
frml tln = %LNGAMMA((v+1)/2.)-%LNGAMMA(v/2.)-0.5*log(v-2.)
frml gln = tln-((v+1)/2.)*log(1.0+tt(t)/(v-2.0))-0.5*log(h(t))
smpl 2 792
compute a0 = 0.01, a1 = 0.1, b1 = 0.5, mu = 0.1, v = 10
maximize(method=bhhh,recursive,iterations=150) gln
set fv = gvar(t)
set resid = at(t)/sqrt(fv(t))
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

C. An AR(1)-EGARCH(1,0) Model for Monthly Log Returns of IBM Stock

all 0 864:1
open data m-ibm.dat
data(org=obs) / rt
set h = 0.0
nonlin c0 p1 th ga a0 a1
frml at = rt(t)-c0-p1*rt(t-1)
frml epsi = at(t)/(sqrt(exp(h(t))))
frml g = th*epsi(t)+ga*(abs(epsi(t))-sqrt(2./%PI))
frml gvar = a1*h(t-1)+(1-a1)*a0+g(t-1)
frml garchln = -0.5*(h(t)=gvar(t))-0.5*epsi(t)**2
smpl 3 864
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compute c0 = 0.01, p1 = 0.01, th = 0.1, ga = 0.1
compute a0 = 0.01, a1 = 0.5
maximize(method=bhhh,recursive,iterations=150) garchln
set fv = gvar(t)
set resid = epsi(t)
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

EXERCISES

1. Derive multistep ahead forecasts for a GARCH(1, 2) model at the forecast ori-
gin h.

2. Derive multistep ahead forecasts for a GARCH(2, 1) model at the forecast ori-
gin h.

3. Suppose that r1, . . . , rn are observations of a return series that follows the
AR(1)-GARCH(1, 1) model

rt = µ+ φ1rt−1 + at , at = σtεt , σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1,

where εt is a standard Gaussian white noise series. Derive the conditional log
likelihood function of the data.

4. In the previous equation, assume that εt follows a standardized Student-t distri-
bution with v degrees of freedom. Derive the conditional log likelihood function
of the data.

5. Consider the monthly log return of Intel stock from 1973 to 1997. Build a
GARCH model for the series and compute 1 to 5-step ahead volatility forecasts
at the forecast origin December 1997.

6. The file “m-mrk.dat” contains monthly simple returns of Merck stock. There are
three columns—namely, monthly simple returns, years, and months. Transform
the simple returns to log returns.

• Is there evidence of ARCH effects in the log returns? Use Ljung–Box statistics
for the squared returns with 5 and 10 lags of autocorrelation and 5% signifi-
cance level to answer the question.

• Use the PACF of the squared log returns to identify an ARCH model for the
data and fit the identified model. Write down the fitted model.

7. The file “m-mmm.dat” contains two columns. They are monthly simple return
and date for 3M stock. Transform the returns to log returns.
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• Is there evidence of ARCH effects in the log returns? Use Ljung–Box statistics
with 5 and 10 lags of autocorrelation and 5% significance level to answer the
question.

• Use the PACF of the squared returns to identify an ARCH model. What is the
fitted model?

• There are 623 data points. Use the fitted model earlier to predict the volatilities
for t = 624 and t = 625 (the forecast origin is 623).

• Build a ARCH-M model for the log return series of 3M stock. Test the hypoth-
esis that the risk premium is zero at the 5% significance level. Draw your
conclusion.

• Build an EGARCH model for the log return series of 3M stock. Use the fitted
model to compute 1- and 2-step ahead volatility forecasts at the forecast origin
h = 623.

8. The file “m-gmsp5099.dat” contains the monthly log returns, in percentages, of
General Motors stock and S&P 500 index from 1950 to 1999. The GM stock
returns are in column 1.

• Build a GARCH model with Gaussian innovations for the log returns of GM
stock. Check the model and write down the fitted model.

• Build a GARCH-M model with Gaussian innovations for the log returns of
GM stock. What is the fitted model?

• Build a GARCH model with Student-t distribution with 6 degrees of freedom
for the GM log returns. Check the model and write down the fitted model.

• Build a GARCH model with Student-t distribution for the log returns of GM
stock, including estimation of the degrees of freedom. Write down the fitted
model. Let v be the degrees of freedom of the Student-t distribution. Test the
hypothesis Ho : v = 6 versus Ha : v �= 6, using the 5% significance level.

• Build an EGARCH model for the log returns of GM stock. What is the fitted
model?

• Compare all the volatility models obtained for the log returns of GM stock. Is
there any significant difference? Why?

9. Again, consider the file “m-gmsp5099.dat.”

• Build a Gaussian GARCH model for the monthly log returns of S&P 500
index. Check the model carefully.

• Is there a Summer effect on the volatility of the index return? Use the GARCH
model built in part (a) to answer this question.

• Are lagged returns of GM stock useful in modeling the index volatility? Again,
use the GARCH model of part (a) as a baseline model for comparison.
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10. The file “d-ibmln.dat” contains the daily log returns, in percentages, of IBM
stock from July 1962 to December 1997 with 8938 observations. The file has
only one column. Fit a GARCH(1, 1) model to the series. What is the fitted
model?

REFERENCES

Andersen, T. G., and Bollerslev, T. (1998), “Answering the skeptics: Yes, standard volatility
models do provide accurate forecasts,” International Economic Review, 39, 885–905.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (1999), “The distribution of
exchange rate volatility,” Working paper, Economics Department, University of Pennsyl-
vania.

Bai, X., Russell, J. R., and Tiao, G. C. (2000), “Beyond Metron’s Utopia: effects of depen-
dence and non-normality on variance estimates using high-frequency data,” Working paper,
Graduate School of Business, University of Chicago.

Bai, X., Russell, J. R., and Tiao, G. C. (2001), “Kurtosis of GARCH and stochastic volatility
models,” Working paper, Graduate School of Business, University of Chicago.

Bollerslev, T. (1986), “Generalized autoregressive conditional heteroskedasticity.” Journal of
Econometrics, 31, 307–327.

Bollerslev, T. (1990), “Modeling the coherence in short-run nominal exchange rates: A multi-
variate generalized ARCH approach,” Review of Economics and Statistics, 72, 498–505.

Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992), “ARCH modeling in finance,” Journal
of Econometrics, 52, 5–59.

Bollerslev, T., Engle, R. F., and Nelson, D. B. (1994), “ARCH model” in Handbook of Econo-
metrics IV, 2959–3038, ed. Engle, R. F., and McFadden, D. C. Amsterdam: Elsrier Science.

Bollerslev, T., and Jubinski, D. (1999), “Equality trading volume and volatility: Latent infor-
mation arrivals and common long-run dependencies,” Journal of Business & Economic
Statistics, 17, 9–21.

Breidt, F. J., Crato, N., and de Lima, P. (1998), “On the detection and estimation of long
memory in stochastic volatility,” Journal of Econometrics, 83, 325–348.

Cao, C., and Tsay, R. S. (1992), “Nonlinear time series analysis of stock volatilities,” Journal
of Applied Econometrics, 7, s165–s185.

Ding, Z., Granger, C. W. J., and Engle, R. F. (1993), “A long memory property of stock returns
and a new model,” Journal of Empirical Finance, 1, 83–106.

Engle, R. F. (1982), “Autoregressive conditional heteroscedasticity with estimates of the vari-
ance of United Kingdom inflations,” Econometrica, 50, 987–1007.

French, K. R., Schwert, G. W., and Stambaugh, R. F. (1987), “Expected stock returns and
volatility,” Journal of Financial Economics, 19, 3–29.

Harvey, A. C., Ruiz, E., and Shephard, N. (1994), “Multivariate stochastic variance models,”
Review of Economic Studies, 61, 247–264.

Jacquier, E., Polson, N. G., and Rossi, P. (1994), “Bayesian analysis of stochastic volatility
models” (with discussion), Journal of Business & Economic Statistics, 12, 371–417.

McLeod, A. I., and Li, W. K. (1983), “Diagnostic checking ARMA time series models using
squared-residual autocorrelations,” Journal of Time Series Analysis, 4, 269–273.



REFERENCES 125

Melino, A., and Turnbull, S. M. (1990), “Pricing foreign currency options with stochastic
volatility,” Journal of Econometrics, 45, 239–265.

Nelson, D. B. (1990), “Stationarity and persistence in the GARCH(1, 1)model,” Econometric
Theory, 6, 318–334.

Nelson, D. B. (1991), “Conditional heteroskedasticity in asset returns: A new approach,”
Econometrica, 59, 347–370.

Nicholls, D. F., and Quinn, B. G. (1982), Random Coefficient Autoregressive Models: An Intro-
duction, Lecture Notes in Statistics, 11. Springer-Verlag: New York.

Ray, B. K., and Tsay, R. S. (2000), “Long-range dependence in daily stock volatilities,” Jour-
nal of Business & Economic Statistics, 18, 254–262.

Taylor, S. J. (1994), “Modeling stochastic volatility,” Mathematical Finance, 4, 183–204.

Tong, H. (1978), “On a threshold model,” in Pattern Recognition and Signal Processing, ed.
C.H. Chen, Sijhoff & Noordhoff: Amsterdam.

Tong, H. (1990), Non-Linear Time Series: A Dynamical System Approach, Oxford University
Press: Oxford.

Tsay, R. S. (1987), “Conditional heteroscedastic time series models,” Journal of the American
Statistical Association, 82, 590–604.



C H A P T E R 4

Nonlinear Models
and Their Applications

This chapter focuses on nonlinearity in financial data and nonlinear econometric
models useful in analysis of financial time series. Consider a univariate time series
xt , which, for simplicity, is observed at equally spaced time intervals. We denote
the observations by {xt | t = 1, . . . , T }, where T is the sample size. As stated in
Chapter 2, a purely stochastic time series xt is said to be linear if it can be written as

xt = µ+
∞∑

i=0

ψi at−i , (4.1)

where µ is a constant, ψi are real numbers with ψ0 = 1, and {at } is a sequence
of independent and identically distributed (iid) random variables with a well-
defined distribution function. We assume that the distribution of at is continuous
and E(at ) = 0. In many cases, we further assume that Var(at ) = σ 2

a or, even
stronger, that at is Gaussian. If σ 2

a
∑∞

i=1 ψ
2
i < ∞, then xt is weakly stationary (i.e.,

the first two moments of xt are time-invariant). The ARMA process of Chapter 2 is
linear because it has an MA representation in Eq. (4.1). Any stochastic process that
does not satisfy the condition of Eq. (4.1) is said to be nonlinear. The prior definition
of nonlinearity is for purely stochastic time series. One may extend the definition
by allowing the mean of xt to be a linear function of some exogenous variables,
including the time index and some periodic functions. But such a mean function can
be handled easily by methods discussed in Chapter 2, and we do not discuss it here.
Mathematically, a purely stochastic time series model for xt is a function of an iid
sequence consisting of the current and past shocks—that is,

xt = f (at , at−1, . . .). (4.2)

The linear model in Eq. (4.1) says that f (.) is a linear function of its arguments.
Any nonlinearity in f (.) results in a nonlinear model. The general nonlinear model
in Eq. (4.2) is not directly applicable because it contains too many parameters.
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To put nonlinear models available in the literature in a proper perspective,
we write the model of xt in terms of its conditional moments. Let Ft−1 be the
σ -field generated by available information at time t − 1 (inclusive). Typically, Ft−1
denotes the collection of linear combinations of elements in {xt−1, xt−2, . . .} and
{at−1, at−2, . . .}. The conditional mean and variance of xt given Ft−1 are

µt = E(xt | Ft−1) ≡ g(Ft−1), σ 2
t = Var(xt | Ft−1) ≡ h(Ft−1), (4.3)

where g(.) and h(.) are well-defined functions with h(.) > 0. Thus, we restrict the
model to

xt = g(Ft−1)+√
h(Ft−1)εt ,

where εt = at/σt is a standardized shock. For the linear series xt in Eq. (4.1), g(.)
is a linear function of elements of Ft−1 and h(.) = σ 2

a . The development of non-
linear models involves making extensions of the two equations in Eq. (4.3). If g(.)
is nonlinear, xt is said to be nonlinear in mean. If h(.) is time-variant, then xt is
nonlinear in variance. The conditional heteroscedastic models of Chapter 3 are non-
linear in variance because their conditional variances σ 2

t evolve over time. In fact,
except for the GARCH-M models, in whichµt depends on σ 2

t and hence also evolves
over time, all of the volatility models of Chapter 3 focus on modifications or exten-
sions of the conditional variance equation in Eq. (4.3). Based on the well-known
Wold Decomposition, a weakly stationary and purely stochastic time series can be
expressed as a linear function of uncorrelated shocks. For stationary volatility series,
these shocks are uncorrelated, but dependent. The models discussed in this chapter
represent another extension to nonlinearity derived from modifying the conditional
mean equation in Eq. (4.3).

Many nonlinear time series models have been proposed in the statistical literature,
such as the bilinear models of Granger and Andersen (1978), the threshold autore-
gressive (TAR) model of Tong (1978), the state-dependent model of Priestley (1980),
and the Markov switching model of Hamilton (1989). The basic idea underlying
these nonlinear models is to let the conditional mean µt evolve over time according
to some simple parametric nonlinear function. Recently, a number of nonlinear mod-
els have been proposed by making use of advances in computing facilities and com-
putational methods. Examples of such extensions include the nonlinear state-space
modeling of Carlin, Polson, and Stoffer (1992), the functional-coefficient autoregres-
sive model of Chen and Tsay (1993a), the nonlinear additive autoregressive model of
Chen and Tsay (1993b), and the multivariate adaptive regression spline of Lewis and
Stevens (1991). The basic idea of these extensions is either using simulation meth-
ods to describe the evolution of the conditional distribution of xt or using data-driven
methods to explore the nonlinear characteristics of a series. Finally, nonparametric
and semiparametric methods such as kernel regression and artificial neural networks
have also been applied to explore the nonlinearity in a time series. We discuss some
nonlinear models in Section 4.1 that are applicable to financial time series. The dis-
cussion includes some nonparametric and semiparametric methods.
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Apart from the development of various nonlinear models, there is substantial
interest in studying test statistics that can discriminate linear series from nonlinear
ones. Both parametric and nonparametric tests are available. Most parametric tests
employ either the Lagrange multiplier or likelihood ratio statistics. Nonparametric
tests depend on either higher order spectra of xt or the concept of dimension corre-
lation developed for chaotic time series. We review some nonlinearity tests in Sec-
tion 4.2. Sections 4.3 and 4.4 discuss modeling and forecasting of nonlinear models.
Finally, an application of nonlinear models is given in Section 4.5.

4.1 NONLINEAR MODELS

Most nonlinear models developed in the statistical literature focus on the conditional
mean equation in Eq. (4.3); see Priestley (1988) and Tong (1990) for summaries
of nonlinear models. Our goal here is to introduce some nonlinear models that are
applicable to financial time series.

4.1.1 Bilinear Model

The linear model in Eq. (4.1) is simply the first-order Taylor series expansion of the
f (.) function in Eq. (4.2). As such, a natural extension to nonlinearity is to employ
the second-order terms in the expansion to improve the approximation. This is the
basic idea of bilinear models, which can be defined as

xt = c +
p∑

i=1

φi xt−i −
q∑

j=1

θ j at− j +
m∑

i=1

s∑
j=1

βi j xt−i at− j + at , (4.4)

where p, q, m, and s are non-negative integers. This model was introduced by
Granger and Andersen (1978) and has been widely investigated. Subba Rao and
Gabr (1984) discuss some properties and applications of the model, and Liu and
Brockwell (1988) study general bilinear models. Properties of bilinear models such
as stationarity conditions are often derived by (a) putting the model in a state-space
form, and (b) using the state transition equation to express the state as a product
of past innovations and random coefficient vectors. A special generalization of the
bilinear model in Eq. (4.4) has conditional heteroscedasticity. For example, consider
the model

xt = µ+
s∑

i=1

βi at−i at + at , (4.5)

where {at } is a white noise series. The first two conditional moments of xt are

E(xt | Ft−1) = µ, Var(xt | Ft−1) =
(

1 +
s∑

i=1

βi at−i

)2

σ 2
a ,

which are similar to that of the RCA or CHARMA model of Chapter 3.
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Example 4.1. Consider the monthly simple returns of CRSP equal-weighted
index from January 1926 to December 1997 for 864 observations. Denote the series
by Rt . The sample PACF of Rt shows significant partial autocorrelations at lags 1 and
3, whereas that of R2

t suggests that the conditional heteroscedasticity might depend
on the past three innovations. Therefore, we employ the special bilinear model

Rt = µ+ φ1 Rt−1 + φ3 Rt−3 + (1 + β1at−1 + β2at−2 + β3at−3)at

for the series. Assuming that the conditional distribution of at is normal, we use the
conditional maximum likelihood method and obtain the fitted model

Rt = 0.014 + 0.160Rt−1 − 0.104Rt−3

+ (1 + 0.337at−1 − 0.022at−2 − 0.601at−3)at , (4.6)

where σ̂ 2
a = .0052 and the standard errors of the parameters are, in the order of

appearance, 0.003, 0.026, 0.018, 0.083, 0.084, and 0.079. The only insignificant esti-
mate is the coefficient of at−2. Define

ât = Rt − 0.014 − 0.160Rt−1 + 0.014Rt−3

1 + 0.337ât−1 − 0.022ât−2 − 0.601ât−3
,

where ât = 0 for t ≤ 3 as the residual series of the model. The sample ACF of
ât shows no significant serial correlations, but the series is not independent because
the squared series â2

t has significant serial correlations. The validity of model (4.6)
deserves further investigation. For comparison, we also consider an ARCH(3) model
for the series and obtain

Rt = 0.013 + 0.222Rt−1 − 0.140Rt−3 + at ,

σ 2
t = 0.002 + 0.168a2

t−1 + 0.00001a2
t−2 + 0.274a2

t−3, (4.7)

where all estimates but the coefficient of a2
t−2 are highly significant. The standardized

residual series and its squared series show no serial correlations, indicating that the
ARCH(3) model is adequate for the data. Models (4.6) and (4.7) appear to be similar,
but the latter seems to fit the data better.

4.1.2 Threshold Autoregressive (TAR) Model

This model is motivated by several nonlinear characteristics commonly observed in
practice such as asymmetry in declining and rising patterns of a process. It uses
piecewise linear models to obtain a better approximation of the conditional mean
equation. However, in contrast to the traditional piecewise linear model that allows
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for model changes to occur in the “time” space, the TAR model uses threshold space
to improve linear approximation. Let us start with a simple two-regime AR(1) model

xt =
{−1.5xt−1 + at if xt−1 < 0,

0.5xt−1 + at if xt−1 ≥ 0,
(4.8)

where at s are iid N (0, 1). Here the delay is 1 and the threshold is 0. Figure 4.1
shows the time plot of a simulated series of xt with 200 observations. A horizon-
tal line of zero is added to the plot, which illustrates several characteristics of TAR
models. First, despite of the coefficient −1.5 in the first regime, the process xt is
geometrically ergodic and stationary. In fact, the necessary and sufficient condition
for model (4.8) to be geometrically ergodic is φ(1)1 < 1, φ(2)1 < 1, and φ(1)1 φ

(2)
1 < 1,

where φ(i) is the AR coefficient of regime i ; see Petruccelli and Woolford (1984)
and Chen and Tsay (1991). Ergodicity is an important concept in time series analy-
sis. For example, the statistical theory showing that the sample mean x̄ = ∑T

t=1 xt/T
of xt converges to the mean of xt is referred to as the ergodic theorem, which can
be regarded as the counterpart of the central limit theory for the iid case. Second,
the series exhibits an asymmetric increasing and decreasing pattern. If xt−1 is neg-
ative, then xt tends to switch to a positive value due to the negative and explosive
coefficient −1.5. Yet when xt−1 is positive, it tends to take multiple time indexes
for xt to reduce to a negative value. Consequently, the time plot of xt shows that
regime 2 has more observations than regime 1, and the series contains large upward
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Figure 4.1. Time plot of a simulated two-regime TAR(1) series.
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jumps when it becomes negative. The series is therefore not time-reversible. Third,
the model contains no constant terms, but E(xt) is not zero. The sample mean of the
particular realization is 0.61 with a standard deviation 0.07. In general, E(xt ) is a
weighted average of the conditional means of the two regimes, which are nonzero.
The weight for each regime is simply the probability that xt is in that regime under
its stationary distribution. It is also clear from the discussion that, for a TAR model
to have zero mean, nonzero constant terms in some of the regimes are needed. This
is very different from a stationary linear model for which a nonzero constant implies
that the mean of xt is not zero.

A time series xt is said to follow a k-regime self-exciting TAR (SETAR) model
with threshold variable xt−d if it satisfies

xt = φ
( j)
0 + φ

( j)
1 xt−1 − · · · − φ

( j)
p xt−p + a( j)

t , if γ j−1 ≤ xt−d < γ j , (4.9)

where k and d are positive integers, j = 1, . . . , k, γi s are real numbers such that
−∞ = γ0 < γ1 < · · · < γk−1 < γk = ∞, the superscript ( j) is used to signify the
regime, {a( j)

t } are iid sequences with mean 0 and variance σ 2
j and are mutually inde-

pendent for different j . The parameter d is referred to as the delay parameter and γ j s
as the thresholds. Here it is understood that the AR models are different for different
regimes; otherwise, the number of regimes can be reduced. Equation (4.9) says that
a SETAR model is a piecewise linear AR model in the threshold space. It is similar
in spirit to the usual piecewise linear models in regression analysis, where model
changes occur in the order by which observations are taken. The SETAR model is
nonlinear provided that k > 1.

Properties of general SETAR models are hard to obtain, but some of them can
be found in Tong (1990), Chan (1993), Chan and Tsay (1998), and the references
therein. In recent years, there is increasing interest in TAR models and their applica-
tions; see, for instance, Hansen (1997), Tsay (1998), and Montgomery et al. (1998).
A testing and modeling procedure for univariate SETAR models is proposed in Tsay
(1989). The SETAR model in Eq. (4.9) can be generalized by using a threshold vari-
able zt that is measurable with respect to Ft−1 (i.e., a function of elements of Ft−1).
The main requirements are that zt is stationary with a continuous distribution func-
tion over a compact subset of the real line and that zt−d is known at time t . Such a
generalized model is referred to as an open-loop TAR model.

An important application of SETAR models in finance is to handle the asymmetric
responses in volatility between positive and negative returns. The models can also be
used to study arbitrage tradings in index futures and cash prices; see Chapter 8 on
multivariate time series analysis. Here we focus on volatility modeling.

Example 4.2. To illustrate the application of TAR models in finance, we con-
sider the daily log returns, in percentages and including dividends, of IBM stock
from July 3, 1962 to December 31, 1999 for 9442 observations. Figure 4.2 shows the
time plot of the series. The volatility seems to be larger in recent years. If GARCH
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Figure 4.2. Time plot of the daily log returns for IBM stock from July 3, 1962 to Decem-
ber 31, 1999.

models of Chapter 3 are entertained, we obtain the following AR(2)-GARCH(1, 1)
model for the series

rt = 0.067 − 0.023rt−2 + at , at = σtεt

σ 2
t = 0.031 + 0.076a2

t−1 + 0.915σ 2
t−1, (4.10)

where rt is the log return, {εt } is a Gaussian white noise sequence with mean zero and
variance 1.0, the standard errors of the parameters in the mean equation are 0.013
and 0.011, respectively, and those of the volatility equation are 0.003, 0.002, and
0.003, respectively. All estimates but the coefficient of rt−2 are highly significant.
The Ljung–Box statistics of the standardized residuals give Q(10) = 11.31(0.33)
and Q(20) = 27.00(0.14), where the number in parentheses denotes p value.
For the squared standardized residuals, we obtain Q(10) = 11.86(0.29) and
Q(20) = 19.19(0.51). The model is adequate in modeling the serial dependence
and conditional heteroscedasticity of the data. But the unconditional mean for rt of
model (4.10) is 0.065, which is substantially larger than the sample mean 0.045,
indicating that the model might be misspecified. The TAR model can be used to
refine the model by allowing for asymmetric response in volatility to the sign of
shock at−1. More specifically, we consider an AR(2)-TAR-GARCH(1, 1) model for
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the series and obtain

rt = 0.043 − 0.022rt−2 + at , at = σtεt

σ 2
t = 0.002 + 0.097a2

t−1 + 0.954σ 2
t−1

+ (0.056 − 0.051a2
t−1 − 0.067σ 2

t−1)I (at−1 > 0),

where I (at−1) = 1 if at−1 > 0 and it is zero otherwise. Because the estimate 0.002
of the volatility equation is insignificant at the 5% level, we further refine the model
to

rt = 0.043 − 0.022rt−2 + at , at = σtεt

σ 2
t = 0.098a2

t−1 + 0.954σ 2
t−1

+ (0.060 − 0.052a2
t−1 − 0.069σ 2

t−1)I (at−1 > 0), (4.11)

where the standard errors of the two parameters in the mean equation are 0.013 and
0.010, respectively, and those of the TAR-GARCH(1, 1) model are 0.003, 0.004,
0.005, 0.004, and 0.009. All of the estimates are statistically significant at the 5%
level. The unconditional mean for rt of model (4.11) is 0.042, which is very close
to the sample mean of rt . Residual analysis based on the Ljung–Box statistics finds
no significant serial correlations or conditional heteroscedasticity in the standard-
ized residuals. The AR coefficient in the mean equation is small, indicating that, as
expected, the daily log returns of IBM stock are essentially serially uncorrelated.
However, the volatility model of the returns shows strong dependence in the innova-
tional process {at } and evidence of asymmetry in the conditional variance. Rewriting
the TAR-GARCH(1, 1) equation as

σ 2
t =

{
0.098a2

t−1 + 0.954σ 2
t−1 if at−1 ≤ 0

0.060 + 0.046a2
t−1 + 0.885σ 2

t−1 if at−1 > 0,
(4.12)

we obtain some interesting implications. First, if we interpret at−1 as the devia-
tion of IBM daily log return from its conditional expectation, then volatility follows
essentially an IGARCH(1, 1) model without a drift when the deviation is nonposi-
tive. Second, when the deviation is positive, the volatility has a persistent parameter
0.046 + 0.885 = 0.931, which is close to, but less than, 1. Therefore, the volatil-
ity follows a GARCH(1, 1) model when the deviation is positive. Consequently, the
volatility responds differently to positive and negative shocks. Finally, other thresh-
old volatility models have also been proposed in the literature (e.g., Rabemananjara
and Zakoian, 1993; Zakoian, 1994).

Remark: The RATS program used to estimate the AR(2)-Tar-GARCH(1, 1)
model is in the appendix.
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4.1.3 Smooth Transition AR (STAR) Model

A criticism of the SETAR model is that its conditional mean equation is not continu-
ous. The thresholds {γ j } are the discontinuity points of the conditional mean function
µt . In response to this criticism, smooth TAR models have been proposed; see Chan
and Tong (1986) and Teräsvirta (1994) and the references therein. A time series xt is
said to follow a two-regime STAR(p) model if it satisfies

xt = c0 +
p∑

i=1

φ0,i xt−i + F

(
xt−d −�

s

)(
c1 +

p∑
i=1

φ1,i xt−i

)
+ at , (4.13)

where d is the delay parameter,� and s are parameters representing the location and
scale of model transition, and F(.) is a smooth transition function. In practice, F(.)
often assumes one of three forms—namely, logistic, exponential, or a cumulative
distribution function. From Eq. (4.13), the conditional mean of a STAR model is a
weighted linear combination between the following two equations:

µ1t = c0 +
p∑

i=1

φ0,i xt−i ,

µ2t = (c0 + c1)+
p∑

i=1

(φ0,i + φ1,i )xt−i .

The weights are determined in a continuous manner by F( xt−d−�
s ). The prior two

equations also determine properties of a STAR model. For instance, a prerequisite
for the stationarity of a STAR model is that all zeros of both AR polynomials are
outside the unit circle. An advantage of the STAR model over the TAR model is that
the conditional mean function is differentiable. However, experience shows that the
transition parameters � and s of a STAR model are hard to estimate. In particular,
most empirical studies show that standard errors of the estimates of� and s are often
quite large resulting in t ratios about 1.0; see Teräsvirta (1994). This uncertainty leads
to various complications in interpreting an estimated STAR model.

Example 4.3. To illustrate the application of STAR models in financial time
series analysis, we consider the monthly simple stock returns for Minnesota Mining
and Manufacturing (3M) Company from February 1946 to December 1997. If ARCH
models are entertained, we obtain the following ARCH(2) model

Rt = 0.014 + at , at = σtεt , σ 2
t = 0.003 + 0.108a2

t−1 + 0.151a2
t−2, (4.14)

where standard errors of the estimates are 0.002, 0.0003, 0.045, and 0.058, respec-
tively. As discussed before, such an ARCH model fails to show the asymmetric
responses of stock volatility to positive and negative prior shocks. The STAR model
provides a simple alternative that may overcome this difficulty. Applying STAR mod-
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els to the monthly returns of 3M stock, we obtain the model

Rt = 0.017 + at , at = σtεt ,

σ 2
t = (0.002 + 0.256a2

t−1 + 0.141a2
t−2)+ 0.002 − 0.314a2

t−1

1 + exp(−1000at−1)
, (4.15)

where the standard error of the constant term in the mean equation is 0.002 and
those of the estimates in the volatility equation are 0.0003, 0.092, 0.056, 0.001, and
0.102, respectively. The scale parameter 1000 of the logistic transition function is
fixed a priori to simplify the estimation. This STAR model provides some support
for asymmetric responses to positive and negative prior shocks. For a large negative
at−1, the volatility model approaches the ARCH(2) model

σ 2
t = 0.002 + 0.256a2

t−1 + 0.141a2
t−2.

Yet for a large positive at−1, the volatility process behaves like the ARCH(2) model

σ 2
t = 0.005 − 0.058a2

t−1 + 0.141a2
t−2.

The negative coefficient of a2
t−1 in the prior model is counterintuitive, but the magni-

tude is small. As a matter of fact, for a large positive shock at−1, the ARCH effects
appear to be weak even though the parameter estimates remain statistically signifi-
cant. The RATS program used is given in the appendix.

4.1.4 Markov Switching Model

The idea of using probability switching in nonlinear time series analysis is discussed
in Tong (1983). Using a similar idea, but emphasizing aperiodic transition between
various states of an economy, Hamilton (1989) considers the Markov switching
autoregressive (MSA) model. Here the transition is driven by a hidden two-state
Markov chain. A time series xt follows an MSA model if it satisfies

xt =
{

c1 +∑p
i=1 φ1,i xt−i + a1t if st = 1,

c2 +∑p
i=1 φ2,i xt−i + a2t if st = 2,

(4.16)

where st assumes values in {1, 2} and is a first-order Markov chain with transition
probabilities

P(st = 2 | st−1 = 1) = w1, P(st = 1 | st−1 = 2) = w2.

The innovational series {a1t } and {a2t } are sequences of iid random variables with
mean zero and finite variance and are independent of each other. A small wi means
that the model tends to stay longer in state i . In fact, 1/wi is the expected duration
of the process to stay in State i . From the definition, an MSA model uses a hidden
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Markov chain to govern the transition from one conditional mean function to another.
This is different from that of a SETAR model for which the transition is determined
by a particular lagged variable. Consequently, a SETAR model uses a deterministic
scheme to govern the model transition, whereas an MSA model uses a stochastic
scheme. In practice, the stochastic nature of the states implies that one is never cer-
tain about which state xt belongs to in an MSA model. When the sample size is
large, one can use some filtering techniques to draw inference on the state of xt . Yet
as long as xt−d is observed, the regime of xt is known in a SETAR model. This dif-
ference has important practical implications in forecasting. For instance, forecasts of
an MSA model are always a linear combination of forecasts produced by submodels
of individual states. But those of a SETAR model only come from a single regime
provided that xt−d is observed. Forecasts of a SETAR model also become a linear
combination of those produced by models of individual regimes when the forecast
horizon exceeds the delay d. It is much harder to estimate an MSA model than other
models because the states are not directly observable. Hamilton (1990) uses the EM
algorithm, which is a statistical method iterating between taking expectation and
maximization. McCulloch and Tsay (1994) consider a Markov Chain Monte Carlo
(MCMC) method to estimate a general MSA model. We discuss MCMC methods in
Chapter 10.

McCulloch and Tsay (1993) generalize the MSA model in Eq. (4.16) by letting the
transition probabilities w1 and w2 be logistic, or probit, functions of some explana-
tory variables available at time t −1. Chen, McCulloch, and Tsay (1997) use the idea
of Markov switching as a tool to perform model comparison and selection between
non-nested nonlinear time series models (e.g., comparing bilinear and SETAR mod-
els). Each competing model is represented by a state. This approach to select a model
is a generalization of the odds ratio commonly used in Bayesian analysis. Finally,
the MSA model can easily be generalized to the case of more than two states. The
computational intensity involved increases rapidly, however. For more discussions of
Markov switching models in econometrics, see Hamilton (1994, Chapter 22).

Example 4.4. Consider the growth rate, in percentage, of U.S. quarterly real
gross national product (GNP) from the second quarter of 1947 to the first quarter
of 1991. The data are seasonally adjusted and shown in Figure 4.3, where a hor-
izontal line of zero growth is also given. It is reassuring to see that a majority of
the growth rates are positive. This series has been widely used in nonlinear analysis
of economic time series. Tiao and Tsay (1994) and Potter (1995) use TAR models,
whereas Hamilton (1989) and McCulloch and Tsay (1994) employ Markov switch-
ing models.

Employing the MSA model in Eq. (4.16) with p = 4 and using a Markov Chain
Monte Carlo method, which is discussed in Chapter 10, McCulloch and Tsay (1994)
obtain the estimates shown in Table 4.1. The results have several interesting find-
ings. First, the mean growth rate of the marginal model for State 1 is 0.909/(1 −
0.265 − 0.029 + 0.126 + 0.11) = 0.965 and that of State 2 is −0.42/(1 − 0.216 −
0.628 + 0.073 + 0.097) = −1.288. Thus, State 1 corresponds to quarters with posi-
tive growth, or expansion periods, whereas State 2 consists of quarters with negative
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Figure 4.3. Time plot of the growth rate of U.S. quarterly real GNP from 1947.II to 1991.I.
The data are seasonally adjusted and in percentages.

growth, or a contraction period. Second, the relatively large posterior standard devi-
ations of the parameters in State 2 reflect that there are few observations in that state.
This is expected as Figure 4.3 shows few quarters with negative growth. Third, the
transition probabilities appear to be different for different states. The estimates indi-
cate that it is more likely for the U.S. GNP to get out of a contraction period than to
jump into one—0.286 versus 0.118. Fourth, treating 1/wi as the expected duration
for the process to stay in State i , we see that the expected durations for a contraction

Table 4.1. Estimation Results of a Markov Switching Model with p = 4 for the Growth
Rate of U.S. Quarterly Real GNP, Seasonally Adjusted. The Estimates and Their Stan-
dard Errors Are Posterior Means and Standard Errors of a Gibbs Sampling with 5000
Iterations.

State 1

Parameter ci φ1 φ2 φ3 φ4 σi wi

Estimate 0.909 0.265 0.029 −0.126 −0.110 0.816 0.118
Std. Error 0.202 0.113 0.126 0.103 0.109 0.125 0.053

State 2

Estimate −0.420 0.216 0.628 −0.073 −0.097 1.017 0.286
Std. Error 0.324 0.347 0.377 0.364 0.404 0.293 0.064
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period and an expansion period are approximately 3.69 and 11.31 quarters. Thus, on
average, a contraction in the U.S. economy lasts about a year, whereas an expansion
can last for 3 years. Finally, the estimated AR coefficients of xt−2 differ substan-
tially between the two states, indicating that the dynamics of the U.S. economy are
different between expansion and contraction periods.

4.1.5 Nonparametric Methods

In some financial applications, we may not have sufficient knowledge to pre-specify
the nonlinear structure between two variables Y and X . In other applications, we
may wish to take advantage of the advances in computing facilities and computa-
tional methods to explore the functional relationship between Y and X . These con-
siderations lead to the use of nonparametric methods and techniques. Nonparametric
methods, however, are not without any cost. They are highly data-dependent and can
easily result in overfitting. Our goal here is to introduce some nonparametric methods
for financial applications and some nonlinear models that make use of nonparamet-
ric methods and techniques. The nonparametric methods discussed include kernel
regression, local least squares estimation, and neural network.

The essence of nonparametric methods is smoothing. Consider two financial vari-
ables Y and X , which are related by

Yt = m(Xt )+ at , (4.17)

where m(.) is an arbitrary, smooth, but unknown function and {at } is a white noise
sequence. We wish to estimate the nonlinear function m(.) from the data. For sim-
plicity, consider the problem of estimating m(.) at a particular date for which X = x .
That is, we are interested in estimating m(x). Suppose that at X = x we have
repeated independent observations y1, . . . , yT . Then the data become

yt = m(x)+ at , t = 1, . . . , T .

Taking the average of the data, we have∑T
t=1 yt

T
= m(x)+

∑T
t=1 at

T
.

By the Law of Large Number, the average of the shocks converges to zero as T
increases. Therefore, the average ȳ = ∑T

t=1 yt/T is a consistent estimate of m(x).
That the average ȳ provides a consistent estimate of m(x) or, alternatively, that the
average of shocks converges to zero shows the power of smoothing.

In financial time series, we do not have repeated observations available at X = x .
What we observed are {(yt , xt )} for t = 1, . . . , T . But if the function m(.) is suffi-
ciently smooth, then the value of Yt for which Xt ≈ x continues to provide accurate
approximation of m(x). The value of Yt for which Xt is far away from x provides
less accurate approximation for m(x). As a compromise, one can use a weighted
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average of yt instead of the simple average to estimate m(x). The weight should be
larger for those Yt with Xt close to x and smaller for those Yt with Xt far away from
x . Mathematically, the estimate of m(x) for a given x can be written as

m̂(x) = 1

T

T∑
t=1

wt (x)yt , (4.18)

where the weights wt (x) are larger for those yt with xt close to x and smaller for
those yt with xt far away from x .

From Eq. (4.18), the estimate m̂(x) is simply a local weighted average with
weights determined by two factors. The first factor is the distance measure (i.e., the
distance between xt and x). The second factor is the assignment of weight for a given
distance. Different ways to determine the distance between xt and x and to assign
the weight using the distance give rise to different nonparametric methods. In what
follows, we discuss the commonly used kernel regression and local linear regression
methods.

4.1.5.1 Kernel Regression
Kernel regression is perhaps the most commonly used nonparametric method in
smoothing. The weights here are determined by a kernel, which is typically a proba-
bility density function, is denoted by K (x), and satisfies

K (x) ≥ 0,
∫

K (z) dz = 1.

However, to increase the flexibility in distance measure, one often rescales the kernel
using a variable h > 0, which is referred to as the bandwidth. The rescaled kernel
becomes

Kh(x) = 1

h
K (x/h),

∫
Kh(z) dz = 1. (4.19)

The weight function can now be defined as

wt (x) = Kh(x − xt )

1
T

∑T
t=1 Kh(x − xt )

, (4.20)

where the denominator is a normalization constant that makes the smoother adaptive
to the local intensity of the X variable and ensures the weights sum to T . Plugging
Eq. (4.20) into the smoothing formula (4.18), we have the well-known Nadaraya–
Watson kernel estimator

m̂(x) = 1

T

T∑
t=1

wt (x)yt =
∑T

t=1 Kh(x − xt )yt∑T
t=1 Kh(x − xt )

; (4.21)
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see Nadaraya (1964) and Watson (1964). In practice, many choices are available
for the kernel K (x). However, theoretical and practical considerations lead to a few
choices, including the Gaussian kernel

Kh(x) = 1

h
√

2π
exp

(
− x2

2h2

)

and the Epanechnikov kernel (Epanechnikov, 1969)

Kh(x) = 0.75

h

(
1 − x2

h2

)
I
(
| x

h
| ≤ 1

)
,

where I (A) is an indicator such that I (A) = 1 if A holds and I (A) = 0 otherwise.
Figure 4.4 shows the Gaussian and Epanechnikov kernels for h = 1.

To understand the role played by the bandwidth h, we evaluate the Nadaraya–
Watson estimator with the Epanechnikov kernel at the observed values {xt } and con-
sider two extremes. First, if h → 0, then

m̂(xt ) → Kh(0)yt

Kh(0)
= yt ,

x
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Figure 4.4. Standard normal kernel (solid line) and Epanechnikov kernel (dashed line) with
bandwidth h = 1.
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indicating that small bandwidths reproduce the data. Second, if h → ∞, then

m̂(xt ) →
∑T

t=1 Kh(0)yt∑T
t=1 Kh(0)

= 1

T

T∑
t=1

yt = ȳ,

suggesting that large bandwidths lead to an oversmoothed curve—the sample mean.
In general, the bandwidth function h acts as follows. If h is very small, then the
weights focus on a few observations that are in the neighborhood around each xt .
If h is very large, then the weights will spread over larger neighborhoods of xt .
Consequently, the choice of h plays an important role in kernel regression. This is
the well-known problem of bandwidth selection in kernel regression.

4.1.5.2 Bandwidth Selection
There are several approaches for bandwidth selection; see Härdle (1990). The first
approach is the plug-in method, which is based on the asymptotic expansion of the
mean squared error (MSE) for kernel smoothers

E[m̂(x)− m(x)]2,

where m(.) is the true function. Under some regularity conditions, one can derive
the optimal bandwidth that minimizes the MSE. The optimal bandwidth typically
depends on several unknown quantities that must be estimated from the data with
some preliminary smoothing. Several iterations are often needed to obtain a rea-
sonable estimate of the optimal bandwidth. In practice, the choice of preliminary
smoothing can become a problem.

The second approach to bandwidth selection is the leave-one-out cross-validation.
First, one observation (x j , y j ) is left out. The remaining T − 1 data points are used
to obtain the following smoother at x j

m̂h, j (x j ) = 1

T − 1

∑
t �= j

wt (x j )yt ,

which is an estimate of y j . Second, perform Step-1 for j = 1, . . . , T and define the
function

CV (h) = 1

T

T∑
j=1

[y j − m̂h, j (x j )]2W (x j ),

where W (.) is a non-negative weight function that can be used to down-weight the
boundary points if necessary. Decreasing the weights assigned to data points close to
the boundary is needed because those points often have fewer neighboring observa-
tions. The function CV (h) is called the cross-validation function because it validates
the ability of the smoother to predict {yt }T

t=1. One chooses the bandwidth h that
minimizes the CV (.) function.
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4.1.5.3 Local Linear Regression Method
Assume that the second derivative of m(.) in model (4.17) exists and is continuous
at x , where x is a given point in the support of m(.). Denote the data available by
{(yt , xt )}T

t=1. The local linear regression method to nonparametric regression is to
find a and b that minimize

L(a, b) =
T∑

t=1

[yt − a − b(x − xt )]2Kh(x − xt ), (4.22)

where Kh(.) is a kernel function defined in Eq. (4.19) and h is a bandwidth. Denote
the resulting value of a by â. The estimate of m(x) is then defined as â.

Under the least squares theory, Eq. (4.22) is a weighted least squares problem and
one can derive a closed-form solution for a. Specifically, taking the partial derivatives
of L(a, b) with respect to both a and b and equating the derivatives to zero, we have
a system of two equations with two unknowns:

T∑
t=1

Kh(x − xt )yt = a
T∑

t=1

Kh(x − xt )+ b
T∑

t=1

(x − xt )Kh(x − xt )

T∑
t=1

yt (x − xt )Kh(x − xt ) = a
T∑

t=1

(x − xt )Kh(x − xt )

+ b
T∑

t=1

(x − xt )
2Kh(x − xt ).

Define

sT,� =
T∑

t=1

Kh(x − xt )(x − xt )
�, � = 0, 1, 2.

The prior system of equations becomes

[
sT,0 sT,1
sT,1 sT,2

] [
a
b

]
=
[ ∑T

t=1 Kh(x − xt )yt∑T
t=1(x − xt )Kh(x − xt )yt

]
.

Consequently, we have

â = sT,2
∑T

t=1 Kh(x − xt )yt − sT,1
∑T

t=1(x − xt )Kh(x − xt )yt

sT,0sT,2 − s2
T,1

.

The numerator and denominator of the prior fraction can be further simplified as
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sT,2

T∑
t=1

Kh(x − xt )yt − sT,1

T∑
t=1

(x − xt )Kh(x − xt )yt

=
T∑

t=1

[Kh(x − xt )(sT,2 − (x − xt )sT,1)]yt .

sT,0sT,2 − s2
T,1 =

T∑
t=1

Kh(x − xt )sT,2 −
T∑

t=1

(x − xt )Kh(x − xt )sT,1

=
T∑

t=1

Kh(x − xt )[sT,2 − (x − xt )sT,1].

In summary, we have

â =
∑T

t=1 wt yt∑T
t=1wt

, (4.23)

where wt is defined as

wt = Kh(x − xt )[sT,2 − (x − xt )sT,1].

In practice, to avoid possible zero in the denominator, we use m̂(x) next to estimate
m(x)

m̂(x) =
∑T

t=1wt yt∑T
t=1wt + 1

T 2

. (4.24)

Notice that a nice feature of Eq. (4.24) is that the weight wt satisfies

T∑
t=1

(x − xt )wt = 0.

Also, if one assumes that m(.) of Eq. (4.17) has the first derivative and finds the
minimizer of

T∑
t=1

(yt − a)2 Kh(x − xt ),

then the resulting estimator is the Nadaraya–Watson estimator mentioned earlier. In
general, if one assumes that m(x) has a bounded k-th derivative, then one can replace
the linear polynomial in Eq. (4.22) by a (k − 1)-order polynomial. We refer to the
estimator in Eq. (4.24) as the local linear regression smoother. Fan (1993) shows
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that, under some regularity conditions, the local linear regression estimator has some
important sampling properties. The selection of bandwidth can be carried out via the
same methods as before.

4.1.5.4 Time Series Application
In time series analysis, the explanatory variables are often the lagged values of the
series. Consider the simple case of a single explanatory variable. Here model (4.17)
becomes

xt = m(xt−1)+ at ,

and the kernel regression and local linear regression method discussed before are
directly applicable. When multiple explanatory variables exist, some modifications
are needed to implement the nonparametric methods. For the kernel regression, one
can use a multivariate kernel such as a multivariate normal density function with a
prespecified covariance matrix:

Kh(x) = 1

(h
√

2π)p|Σ |1/2 exp

(
− 1

2h2
x′Σ−1x

)
,

where p is the number of explanatory variables and Σ is a prespecified positive-
definite matrix. Alternatively, one can use the product of univariate kernel functions
as a multivariate kernel—for example,

Kh(x) =
p∏

i=1

0.75

hi

(
1 − x2

i

h2
i

)
I

(∣∣∣∣ xi

hi

∣∣∣∣ < 1

)
.

This latter approach is simple, but it overlooks the relationship between the explana-
tory variables.

The following nonlinear models are derived with the help of nonparametric
methods.

4.1.6 Functional Coefficient AR Model

Recent advances in nonparametric techniques enable researchers to relax parametric
constraints in proposing nonlinear models. In some cases, nonparametric methods
are used in a preliminary study to help select a parametric nonlinear model. This is
the approach taken by Chen and Tsay (1993a) in proposing the functional-coefficient
autoregressive (FAR) model that can be written as

xt = f1(Xt−1)xt−1 + · · · + f p(Xt−1)xt−p + at , (4.25)

where Xt−1 = (xt−1, . . . , xt−k)
′ is a vector of lagged values of xt . If necessary, Xt−1

may also include other explanatory variables available at time t − 1. The functions
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fi (.) of Eq. (4.25) are assumed to be continuous, even twice differentiable, almost
surely with respect to their arguments. Most of the nonlinear models discussed before
are special cases of the FAR model. In application, one can use nonparametric meth-
ods such as kernel regression or local linear regression to estimate the functional
coefficients fi (.), especially when the dimension of Xt−1 is low (e.g., Xt−1 is a
scalar). Recently, Cai, Fan, and Yao (1999) apply the local linear regression method
to estimate fi (.) and show that substantial improvements in 1-step ahead forecasts
can be achieved by using FAR models.

4.1.7 Nonlinear Additive AR Model

A major difficulty in applying nonparametric methods to nonlinear time series anal-
ysis is the “curse of dimensionality.” Consider a general nonlinear AR(p) process
xt = f (xt−1, . . . , xt−p)+at . A direct application of nonparametric methods to esti-
mate f (.) would require p-dimensional smoothing, which is hard to do when p is
large, especially if the number of data points is not large. A simple, yet effective way
to overcome this difficulty is to entertain an additive model that only requires lower
dimensional smoothing. A time series xt follows a nonlinear additive AR (NAAR)
model if

xt = f0(t)+
p∑

i=1

fi (xt−i )+ at , (4.26)

where fi (.)s are continuous functions almost surely. Because each function fi (.)

has a single argument, it can be estimated nonparametrically using one-dimensional
smoothing techniques and hence avoids the curse of dimensionality. In application,
an iterative estimation method that estimates fi (.) nonparametrically conditioned on
estimates of f j (.) for all j �= i is used to estimate a NAAR model; see Chen and
Tsay (1993b) for further details and examples of NAAR models.

The additivity assumption is rather restrictive and needs to be examined carefully
in application. Chen, Liu, and Tsay (1995) consider test statistics for checking the
additivity assumption.

4.1.8 Nonlinear State-Space Model

Making using of recent advances in MCMC methods (Gelfand and Smith, 1990),
Carlin, Polson, and Stoffer (1992) propose a Monte Carlo approach for nonlinear
state-space modeling. The model considered is

St = ft (St−1)+ ut , xt = gt (St )+ vt , (4.27)

where St is the state vector, ft (.) and gt (.) are known functions depending on some
unknown parameters, {ut } is a sequence of iid multivariate random vectors with zero
mean and non-negative definite covariance matrix Σu , {vt } is a sequence of iid ran-
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dom variables with mean zero and variance σ 2
v , and {ut } is independent of {vt }.

Monte Carlo techniques are employed to handle the nonlinear evolution of the state
transition equation because the whole conditional distribution function of St given
St−1 is needed for a nonlinear system. Other numerical smoothing methods for non-
linear time series analysis have been considered by Kitagawa (1998) and the ref-
erences therein. MCMC methods (or computing-intensive numerical methods) are
powerful tools for nonlinear time series analysis. Their potential has not been fully
explored. However, the assumption of knowing ft (.) and gt (.) in model (4.27) may
hinder practical use of the proposed method. A possible solution to overcome this
limitation is to use nonparametric methods such as the analyses considered in FAR
and NAAR models to specify ft (.) and gt (.) before using nonlinear state-space mod-
els.

4.1.9 Neural Networks

A popular topic in modern data analysis is neural network, which can be classified
as a semiparametric method. The literature on neural network is enormous, and its
application spreads over many scientific areas with varying degrees of success; see
section 2 of Ripley (1993) for a list of applications and section 10 for remarks con-
cerning its application in finance. Cheng and Titterington (1994) provide information
on neural networks from a statistical viewpoint. In this subsection, we focus solely
on the feed-forward neural networks in which inputs are connected to one or more
neurons, or nodes, in the input layer, and these nodes are connected forward to fur-
ther layers until they reach the output layer. Figure 4.5 shows an example of a simple
feed-forward network for univariate time series analysis with one hidden layer. The
input layer has two nodes, and the hidden layer has three. The input nodes are con-
nected forward to each and every node in the hidden layer, and these hidden nodes
are connected to the single node in the output layer. We call the network a 2-3-1 feed-
forward network. More complicated neural networks, including those with feedback
connections, have been proposed in the literature, but the feed-forward networks are
most relevant to our study.

I
N
P
U
T

O
U
T
P
U
T

Hidden Layer

Figure 4.5. A feed-forward neural network with one hidden layer for univariate time series
analysis.
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4.1.9.1 Feed-Forward Neural Networks
A neural network processes information from one layer to the next by an “activation
function.” Consider a feed-forward network with one hidden layer. The j th node in
the hidden layer is defined as

h j = f j

(
α0 j +

∑
i→ j

wi j xi

)
(4.28)

where xi is the value of the i th input node, f j (.) is an activation function typically
taken to be the logistic function

f j (z) = exp(z)

1 + exp(z)
,

α0 j is called the bias, the summation i → j means summing over all input nodes
feeding to j , and wi j are the weights. For illustration, the j th node of the hidden
layer of the 2-3-1 feed-forward network in Figure 4.5 is

h j = exp(α0 j + w1 j x1 + w2 j x2)

1 + exp(α0 j + w1 j x1 + w2 j x2)
, j = 1, 2, 3. (4.29)

For the output layer, the node is defined as

o = fo

(
α0o +

∑
j→o

w joh j

)
, (4.30)

where the activation function fo(.) is either linear or a Heaviside function. If fo(.) is
linear, then

o = α0o +
k∑

j=1

w joh j ,

where k is the number of nodes in the hidden layer. By a Heaviside function, we mean
fo(z) = 1 if z > 0 and fo(z) = 0 otherwise. A neuron with a Heaviside function
is called a threshold neuron, with “1” denoting that the neuron fires its message. For
example, the output of the 2-3-1 network in Figure 4.5 is

o = α0o + w1oh1 + w2oh2 + w3oh3

if the activation function is linear; it is

o =
{

1 if α0o + w1oh1 + w2oh2 + w3oh3 > 0
0 if α0o + w1oh1 + w2oh2 + w3oh3 ≤ 0

if fo(.) is a Heaviside function.
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Combining the layers, the output of a feed-forward neural network can be written
as

o = fo

[
α0o +

∑
j→o

w jo f j

(
α0 j +

∑
i→ j

wi j xi

)]
. (4.31)

If one also allows for direct connections from the input layer to the output layer, then
the network becomes

o = fo

[
α0o +

∑
i→o

αioxi +
∑
j→o

w jo f j

(
α0 j +

∑
i→ j

wi j xi

)]
, (4.32)

where the first summation is summing over the input nodes. When the activation
function of the output layer is linear, the direct connections from the input nodes
to the output node represent a linear function between the inputs and output. Con-
sequently, in this particular case model (4.32) is a generalization of linear models.
For the 2-3-1 network in Figure 4.5, if the output activation function is linear, then
Eq. (4.31) becomes

o = α0o +
3∑

j=1

w joh j ,

where h j is given in Eq. (4.29). The network thus has 13 parameters. If Eq. (4.32) is
used, then the network becomes

o = α0o +
2∑

i=1

αioxi +
3∑

j=1

w joh j ,

where again h j is given in Eq. (4.29). The number of parameters of the network
increases to 15.

We refer to the function in Eq. (4.31) or (4.32) as a semiparametric function
because its functional form is known, but the number of nodes and their biases and
weights are unknown. The direct connections from the input layer to the output layer
in Eq. (4.32) mean that the network can skip the hidden layer. We refer to such a
network as a skip-layer feed-forward network.

Feed-forward networks are known as multilayer percetrons in the neural network
literature. They can approximate any continuous function uniformly on compact sets
by increasing the number of nodes in the hidden layer; see Hornik, Stinchcombe, and
White (1989), Hornik (1993), and Chen and Chen (1995). This property of neural
networks is the universal approximation property of the multilayer percetrons. In
short, feed-forward neural networks with a hidden layer can be seen as a way to
parametrize a general continuous nonlinear function.



NONLINEAR MODELS 149

4.1.9.2 Training and Forecasting
Application of neural networks involves two steps. The first step is to train the net-
work (i.e., to build a network, including determining the number of nodes and esti-
mating their biases and weights). The second step is inference, especially forecasting.
The data are often divided into two nonoverlapping subsamples in the training stage.
The first subsample is used to estimate the parameters of a given feed-forward neu-
ral network. The network so built is then used in the second subsample to perform
forecasting and compute its forecasting accuracy. By comparing the forecasting per-
formance, one selects the network that outperforms the others as the “best” network
for making inference. This is the idea of cross-validation widely used in statistical
model selection. Other model selection methods are also available.

In a time series application, let {(rt , xt ) | t = 1, . . . , T } be the available data
for network training, where xt denotes the vector of inputs and rt is the series of
interest (e.g., log returns of an asset). For a given network, let ot be the output of
the network with input xt ; see Eq. (4.32). Training a neural network amounts to
choosing its biases and weights to minimize some fitting criterion—for example, the
least squares

S2 =
T∑

t=1

(rt − ot )
2.

This is a nonlinear estimation problem that can be solved by several iterative meth-
ods. To ensure the smoothness of the fitted function, some additional constraints can
be added to the prior minimization problem. In the neural network literature, Back
Propagation (BP) learning algorithm is a popular method for network training. The
BP method, introduced by Bryson and Ho (1969), works backward starting with the
output layer and uses a gradient rule to modify the biases and weights iteratively.
Appendix 2A of Ripley (1993) provides a derivation of Back Propagation. Once a
feed-forward neural network is built, it can be used to compute forecasts in the fore-
casting subsample.

Example 4.5. To illustrate applications of neural network in finance, we con-
sider the monthly log returns, in percentages and including dividends, for IBM stock
from January 1926 to December 1999. We divide the data into two subsamples. The
first subsample consisting of returns from January 1926 to December 1997 for 864
observations is used for modeling. Using model (4.32) with three inputs and two
nodes in the hidden layer, we obtain a 3-2-1 network for the series. The three inputs
are rt−1, rt−2, and rt−3, and the biases and weights are given next:

r̂t = 3.22−1.81 f1(rt−1)−2.28 f2(rt−1)−0.09rt−1 −0.05rt−2 −0.12rt−3, (4.33)

where rt−1 = (rt−1, rt−2, rt−3) and the two logistic functions are

f1(rt−1) = exp(−8.34 − 18.97rt−1 + 2.17rt−2 − 19.17rt−3)

1 + exp(−8.34 − 18.97rt−1 + 2.17rt−2 − 19.17rt−3)
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f2(rt−1) = exp(39.25 − 22.17rt−1 − 17.34rt−2 − 5.98rt−3)

1 + exp(39.25 − 22.17rt−1 − 17.34rt−2 − 5.98rt−3)
.

The standard error of the residuals for the prior model is 6.56. For comparison, we
also built an AR model for the data and obtained

rt = 1.101 + 0.077rt−1 + at , σa = 6.61. (4.34)

The residual standard error is slightly greater than that of the feed-forward model in
Eq. (4.33).

Forecast Comparison
The monthly returns of IBM stock in 1998 and 1999 form the second subsample and
are used to evaluate the out-of-sample forecasting performance of neural networks.
As a benchmark for comparison, we use the sample mean of rt in the first subsample
as the 1-step ahead forecast for all the monthly returns in the second subsample. This
corresponds to assuming that the log monthly price of IBM stock follows a random
walk with a drift. The mean squared forecast error (MSE) of this benchmark model
is 91.85. For the AR(1) model in Eq. (4.34), the MSE of 1-step ahead forecasts is
91.70. Thus, the AR(1) model outperforms slightly the benchmark. For the 3-2-1
feed-forward network in Eq. (4.33), the MSE is 91.74, which is essentially the same
as that of the AR(1) model.

Remark: The estimation of feed-forward networks is done by using the
S-Plus program with default starting weights; see Venables and Ripley (1999) for
more information. Our limited experience shows that the estimation results vary.
For the IBM stock returns used in Example 4.5, the out-of-sample MSE for a 3-2-1
network can be as low as 89.46 and as high as 93.65. If we change the number of
nodes in the hidden layer, the range for the MSE becomes even wider. The S-Plus
commands used in Example 4.5 are given in Appendix B.

Example 4.6. Nice features of the feed-forward networks include its flexi-
bility and wide applicability. For illustration, we use the network with a Heaviside
activation function for the output layer to forecast the direction of price movement
for IBM stock considered in Example 4.5. Define a direction variable as

dt =
{

1 if rt ≥ 0
0 if rt < 0.

We use eight input nodes consisting of the first four lagged values of both rt and
dt and four nodes in the hidden layer to build an 8-4-1 feed-forward network for
dt in the first subsample. The resulting network is then used to compute the 1-step
ahead probability of an “upward movement” (i.e., a positive return) for the following
month in the second subsample. Figure 4.6 shows a typical output of probability
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Figure 4.6. One-step ahead probability forecasts for a positive monthly return for IBM stock
using an 8-4-1 feed-forward neural network. The forecasting period is from January 1998 to
December 1999.

forecasts and the actual directions in the second subsample with the latter denoted
by “o.” A horizontal line of 0.5 is added to the plot. If we take a rigid approach by
letting d̂t = 1 if the probability forecast is greater than or equal to 0.5 and d̂t = 0
otherwise, then the neural network has a successful rate of 0.58. The success rate of
the network varies substantially from one estimation to another, and the network uses
49 parameters. To gain more insight, we did a simulation study of running the 8-4-1
feed-forward network 500 times and computed the number of errors in predicting
the upward and downward movement using the same method as before. The mean
and median of errors over the 500 runs are 11.28 and 11, respectively, whereas the
maximum and minimum numbers of errors are 18 and 4. For comparison, we also
did a simulation with 500 runs using a random walk with a drift—that is,

d̂t =
{

1 if r̂t = 1.19 + εt ≥ 0
0 otherwise,

where 1.19 is the average monthly log return for IBM stock from January 1926 to
December 1997 and {εt } is a sequence of iid N (0, 1) random variables. The mean and
median of the number of forecast errors become 10.53 and 11, whereas the maximum
and minimum numbers of errors are 17 and 5, respectively. Figure 4.7 shows the
histograms of the number of forecast errors for the two simulations. The results show
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Figure 4.7. Histograms of the number of forecasting errors for the directional movements of
monthly log returns of IBM stock. The forecasting period is from January 1998 to December
1999.

that the 8-4-1 feed-forward neural network does not outperform the simple model
that assumes a random walk with a drift for the monthly log price of IBM stock.

4.2 NONLINEARITY TESTS

In this section, we discuss some nonlinearity tests available in the literature that have
decent power against the nonlinear models considered in Section 4.1. The tests dis-
cussed include both parametric and nonparametric statistics. The Ljung–Box statis-
tics of squared residuals, the bispectral test, and the BDS test are nonparametric
methods. The RESET test (Ramsey, 1969), the F tests of Tsay (1986, 1989), and
other Lagrange multiplier and likelihood ratio tests depend on specific parametric
functions. Because nonlinearity may occur in many ways, there exists no single test
that dominates the others in detecting nonlinearity.

4.2.1 Nonparametric Tests

Under the null hypothesis of linearity, residuals of a properly specified linear model
should be independent. Any violation of independence in the residuals indicates inad-
equacy of the entertained model, including the linearity assumption. This is the basic
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idea behind various nonlinearity tests. In particular, some of the nonlinearity tests
are designed to check for possible violation in quadratic forms of the underlying
time series.

4.2.1.1 Q-Statistic of Squared Residuals
McLeod and Li (1983) apply the Ljung–Box statistics to the squared residuals of an
ARMA(p, q) model to check for model inadequacy. The test statistic is

Q(m) = T (T + 2)
m∑

i=1

ρ̂2
i (a

2
t )

T − i
,

where T is the sample size, m is a properly chosen number of autocorrelations
used in the test, at denotes the residual series, and ρ̂i (a2

t ) is the lag-i ACF of a2
t .

If the entertained linear model is adequate, Q(m) is asymptotically a chi-squared
random variable with m − p − q degrees of freedom. As mentioned in Chapter 3,
the prior Q-statistic is useful in detecting conditional heteroscedasticity of at and is
asymptotically equivalent to the Lagrange multiplier test statistic of Engle (1982)
for ARCH models; see subsection 3.3.3. The null hypothesis of the statistics is
Ho : β1 = · · · = βm = 0, where βi is the coefficient of a2

t−i in the linear regression

a2
t = β0 + β1a2

t−1 + · · · + βma2
t−m + et

for t = m + 1, . . . , T . Because the statistic is computed from residuals (not directly
from the observed returns), the number of degrees of freedom is m − p − q.

4.2.1.2 Bispectral Test
This test can be used to test for linearity and Gaussianity. It depends on the result
that a properly normalized bispectrum of a linear time series is constant over all
frequencies and that the constant is zero under normality. The bispectrum of a time
series is the Fourier transform of its third-order moments. For a stationary time series
xt in Eq. (4.1), the third-order moment is defined as

c(u, v) = g
∞∑

k=−∞
ψkψk+uψk+v, (4.35)

where u and v are integers, g = E(a3
t ), ψ0 = 1, and ψk = 0 for k < 0. Taking

Fourier transforms of Eq. (4.35), we have

b3(w1, w2) = g

4π2
�[−(w1 + w2)]�(w1)�(w2), (4.36)

where �(w) = ∑∞
u=0 ψu exp(−iwu) with i = √−1, andwi are frequencies. Yet the

spectral density function of xt is given by
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p(w) = σ 2
a

2π
|�(w) |2,

where w denotes the frequency. Consequently, the function

b(w1, w2) = | b3(w1, w2) |2
p(w1)p(w2)p(w1 + w2)

= constant for all (w1, w2). (4.37)

The bispectrum test makes use of the property in Eq. (4.37). Basically, it estimates
the function b(w1, w2) in Eq. (4.37) over a suitably chosen grid of points and applies
a test statistic similar to Hotelling’s T 2 statistic to check the constancy of b(w1, w2).
For a linear Gaussian series, E(a3

t ) = g = 0 so that the bispectrum is zero for all
frequencies (w1, w2). For further details of the bispectral test, see Priestley (1988),
Subba Rao and Gabr (1984), and Hinich (1982). Limited experience shows that the
test has decent power when the sample size is large.

4.2.1.3 BDS Statistic
Brock, Dechert, and Scheinkman (1987) propose a test statistic, commonly referred
to as the BDS test, to detect the iid assumption of a time series. The statistic is, there-
fore, different from other test statistics discussed because the latter mainly focus on
either the second- or third-order properties of xt . The basic idea of the BDS test is
to make use of “correlation integral” popular in chaotic time series analysis. Given a
k-dimensional time series Xt and observations {Xt }Tk

t=1, define the correlation inte-
gral as

Ck(δ) = lim
Tk→∞

2

Tk(Tk − 1)

∑
i< j

Iδ(Xi , X j ), (4.38)

where Iδ(u, v) is an indicator variable that equals one if ‖ u − v ‖ < δ, and zero oth-
erwise, where ‖ . ‖ is the supnorm. The correlation integral measures the fraction of
data pairs of {Xt } that are within a distance of δ from each other. Consider next a time
series xt . Construct k-dimensional vectors Xk

t = (xt , xt+1, . . . , xt+k−1)
′, which are

called k-histories. The idea of the BDS test is as follows. Treat a k-history as a point
in the k-dimensional space. If {xt }T

t=1 are indeed iid random variables, then the k-
histories {Xt }Tk

t=1 should show no pattern in the k-dimensional space. Consequently,
the correlation integrals should satisfy the relation Ck(δ) = [C1(δ)]k . Any departure
from the prior relation suggests that xt are not iid. As a simple, but informative exam-
ple, consider a sequence of iid random variables from the uniform distribution over
[0, 1]. Let [a, b] be a subinterval of [0, 1] and consider the “2-history” (xt , xt+1),
which represents a point in the two-dimensional space. Under the iid assumption,
the expected number of 2-histories in the subspace [a, b] × [a, b] should equal the
square of the expected number of xt in [a, b]. This idea can be formally examined
by using sample counterparts of correlation integrals. Define
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C�(δ, T ) = 2

Tk(Tk − 1)

∑
i< j

Iδ(X
∗
i , X∗

j ), � = 1, k,

where T� = T − �+ 1 and X∗
i = xi if � = 1 and X∗

i = Xk
i if � = k. Under the null

hypothesis that {xt } are iid with a nondegenerated distribution function F(.), Brock,
Dechert, and Scheinkman (1987) show that

Ck(δ, T ) → [C1(δ)]k with probability 1, as T → ∞

for any fixed k and δ. Furthermore, the statistic
√

T {Ck(δ, T ) − [C1(δ, T )]k} is
asymptotically distributed as normal with mean zero and variance

σ 2
k (δ) = 4

[
N k + 2

k−1∑
j=1

N k− j C2 j + (k − 1)2C2k − k2 NC2k−2

]
,

where C = ∫ [F(z + δ)− F(z − δ)]d F(z) and N = ∫ [F(z + δ)− F(z − δ)]2d F(z).
Note that C1(δ, T ) is a consistent estimate of C , and N can be consistently estimated
by

N (δ, T ) = 6

Tk(Tk − 1)(Tk − 2)

∑
t<s<u

Iδ(xt , xs)Iδ(xs, xu).

The BDS test statistic is then defined as

Dk(δ, T ) = √
T {Ck(δ, T )− [C1(δ, T )]k}/σk(δ, T ), (4.39)

where σk(δ, T ) is obtained from σk(δ) when C and N are replaced by C1(δ, T ) and
N (δ, T ), respectively. This test statistic has a standard normal limiting distribution.
For further discussion and examples of applying the BDS test, see Hsieh (1989)
and Brock, Hsieh, and LeBaron (1991). In application, one should remove linear
dependence, if any, from the data before applying the BDS test. The test may be
sensitive to the choices of δ and k, especially when k is large.

4.2.2 Parametric Tests

Turning to parametric tests, we consider the RESET test of Ramsey (1969) and its
generalizations. We also discuss some test statistics for detecting threshold nonlin-
earity. To simplify the notation, we use vectors and matrices in the discussion. If
necessary, readers may consult Appendix A of Chapter 8 for a brief review on vec-
tors and matrices.

4.2.2.1 The RESET Test
Ramsey (1969) proposes a specification test for linear least squares regression anal-
ysis. The test is referred to as a RESET test and is readily applicable to linear AR
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models. Consider the linear AR(p) model

xt = X′
t−1φ+ at , (4.40)

where Xt−1 = (1, xt−1, . . . , xt−p)
′ and φ = (φ0, φ1, . . . , φp)

′. The first step of
the RESET test is to obtain the least squares estimate φ̂ of Eq. (4.40) and compute
the fit x̂t = X′

t−1φ̂, the residual ât = xt − x̂t , and the sum of squared residuals

SS R0 = ∑T
t=p+1 â2

t , where T is the sample size. In the second step, consider the
linear regression

ât = X′
t−1α1 + M′

t−1α2 + vt , (4.41)

where Mt−1 = (x̂2
t , . . . , x̂ s+1

t )′ for some s ≥ 1, and compute the least squares
residuals

v̂t = ât − X′
t−1α̂1 − M′

t−1α̂2

and the sum of squared residuals SS R1 = ∑T
t=p+1 v̂

2
t of the regression. The basic

idea of the RESET test is that if the linear AR(p) model in Eq. (4.40) is adequate,
then α1 and α2 of Eq. (4.41) should be zero. This can be tested by the usual F
statistic of Eq. (4.41) given by

F = (SS R0 − SS R1)/g

SS R1/(T − p − g)
with g = s + p + 1 (4.42)

which, under the linearity and normality assumption, has an F distribution with
degrees of freedom g and T − p − g.

Remark: Because x̂ k
t for k = 2, . . . , s + 1 tend to be highly correlated with

Xt−1 and among themselves, principal components of Mt−1 that are not co-linear
with Xt−1 are often used in fitting Eq. (4.41). Principal component analysis is a
statistical tool for dimension reduction; see Chapter 8 for more information.

Kennan (1985) proposes a nonlinearity test for time series that uses x̂2
t only and

modifies the second step of the RESET test to avoid multicollinearity between x̂2
t

and Xt−1. Specifically, the linear regression (4.41) is divided into two steps. In step
2(a), one removes linear dependence of x̂2

t on Xt−1 by fitting the regression

x̂2
t = X′

t−1β+ ut

and obtaining the residual ût = x̂2
t − Xt−1β̂. In step 2(b), consider the linear regres-

sion

ât = ûtα + vt ,
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and obtain the sum of squared residuals SS R1 = ∑T
t=p+1(ât − ût α̂)

2 = ∑T
t=p+1 v̂

2
t

to test the null hypothesis α = 0.

4.2.2.2 The F Test
To improve the power of Kennan’s and RESET tests, Tsay (1986) uses a dif-
ferent choice of the regressor Mt−1. Specifically, he suggests using Mt−1 =
vech(Xt−1X′

t−1), where vech(A) denotes the half-stacking vector of the matrix
A using elements on and below the diagonal only; see Appendix B of Chap-
ter 8 for more information about the operator. For example, if p = 2, then
Mt−1 = (x2

t−1, xt−1xt−2, x2
t−2)

′. The dimension of Mt−1 is p(p + 1)/2 for an
AR(p) model. In practice, the test is simply the usual partial F statistic for testing
α = 0 in the linear least squares regression

xt = X′
t−1φ+ M′

t−1α+ et ,

where et denotes the error term. Under the assumption that xt is a linear AR(p)
process, the partial F statistic follows an F distribution with degrees of freedom g
and T − p − g − 1, where g = p(p + 1)/2. We refer to this F test as the Ori-F test.
Luukkonen, Saikkonen, and Teräsvirta (1988) further extend the test by augmenting
Mt−1 with cubic terms x3

t−i for i = 1, . . . , p.

4.2.2.3 Threshold Test
When the alternative model under study is a SETAR model, one can derive specific
test statistics to increase the power of the test. One of the specific tests is the likeli-
hood ratio statistic. This test, however, encounters the difficulty of undefined param-
eters under the null hypothesis of linearity because the threshold is undefined for a
linear AR process. Another specific test seeks to transform testing threshold nonlin-
earity into detecting model changes. It is then interesting to discuss the differences
between these two specific tests for threshold nonlinearity.

To simplify the discussion, let us consider the simple case that the alternative
model is a two-regime SETAR model with threshold variable xt−d . The null hypoth-
esis is Ho: xt follows the linear AR(p) model

xt = φ0 +
p∑

i=1

φi xt−i + at , (4.43)

whereas the alternative hypothesis is Ha: xt follows the SETAR model

xt =
φ

(1)
0 +∑p

i=1 φ
(1)
i xt−i + a1t if xt−d < r1

φ
(2)
0 +∑p

i=1 φ
(2)
i xt−i + a2t if xt−d ≥ r1,

(4.44)

where r1 is the threshold. For a given realization {xt }T
t=1 and assuming normality,

let l0(φ̂, σ̂
2
a ) be the log likelihood function evaluated at the maximum likelihood

estimates of φ = (φ0, . . . , φp)
′ and σ 2

a . This is easy to compute. The likelihood
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function under the alternative is also easy to compute if the threshold r1 is given.
Let l1(r1; φ̂1, σ̂

2
1 ; φ̂2, σ̂

2
2 ) be the log likelihood function evaluated at the maximum

likelihood estimates of φi = (φ
(i)
0 , . . . , φ

(i)
p )

′ and σ 2
i conditioned on knowing the

threshold r1. The log likelihood ratio l(r1) defined as

l(r1) = l1(r1; φ̂1, σ̂
2
1 ; φ̂2, σ̂

2
2 )− l0(φ̂, σ̂

2
a ),

is then a function of the threshold r1, which is unknown. Yet under the null hypoth-
esis, there is no threshold and r1 is not defined. The parameter r1 is referred to as a
nuisance parameter under the null hypothesis. Consequently, the asymptotic distri-
bution of the likelihood ratio is very different from that of the conventional likelihood
ratio statistics. See Chan (1991) for further details and critical values of the test. A
common approach is to use lmax = supv<r1<u l(r1) as the test statistic, where v and u
are prespecified lower and upper bounds of the threshold. Davis (1987) and Andrews
and Ploberger (1994) provide further discussion on hypothesis testing involving nui-
sance parameters under the null hypothesis. Simulation is often used to obtain empir-
ical critical values of the test statistic lmax, which depends on the choices of v and u.
The average of l(r1) over r1 ∈ [v, u] is also considered by Andrews and Ploberger
as a test statistic.

Tsay (1989) makes use of arranged autoregression and recursive estimation to
derive an alternative test for threshold nonlinearity. The arranged autoregression
seeks to transfer the SETAR model under the alternative hypothesis Ha into a model
change problem with the threshold r1 serving as the change point. To see this,
the SETAR model in Eq. (4.44) says that xt follows essentially two linear models
depending on whether xt−d < r1 or xt−d ≥ r1. For a realization {xt }T

t=1, xt−d can
assume values {x1, . . . , xT −d}. Let x(1) ≤ x(2) ≤ · · · ≤ x(T −d) be the ordered statis-
tics of {xt }T −d

t=1 (i.e., arranging the observations in increasing order). The SETAR
model can then be written as

x( j)+d = β0 +
p∑

i=1

βi x( j)+d−i + a( j)+d , j = 1, . . . , T − d, (4.45)

where βi = φ
(1)
i if x( j) < r1 and βi = φ

(2)
i if x( j) ≥ r1. Consequently, the threshold

r1 is a change point for the linear regression in Eq. (4.45), and we refer to Eq. (4.45)
as an arranged autoregression (in increasing order of the threshold xt−d ). Note that
the arranged autoregression in Eq. (4.45) does not alter the dynamic dependence of xt

on xt−i for i = 1, . . . , p because x( j)+d still depends on x( j)+d−i for i = 1, . . . , p.
What is done is simply to present the SETAR model in the threshold space instead of
in the time space. That is, the equation with a smaller xt−d appears before that with
a larger xt−d . The threshold test of Tsay (1989) is obtained as follows.

• Step 1: Fit the Eq. (4.45) using j = 1, . . . ,m, where m is a pre-specified pos-
itive integer (e.g., 30). Denote the least squares estimates of βi by β̂i,m , where
m denotes the number of data points used in estimation.
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• Step 2: Compute the predictive residual

â(m+1)+d = x(m+1)+d − β̂0,m −
p∑

i=1

β̂i,m x(m+1)+d−i

and its standard error. Let ê(m+1)+d be the standardized predictive residual.

• Step 3: Use the recursive least squares method to update the least squares esti-
mates to β̂i,m+1 by incorporating the new data point x(m+1)+d .

• Step 4: Repeat Steps 2 and 3 until all data points are processed.

• Step 5: Consider the linear regression of the standardized predictive residual

ê(m+ j)+d = α0 +
p∑

i=1

αi x(m+ j)+d−i + vt , j = 1, . . . , T − d − m (4.46)

and compute the usual F statistic for testing αi = 0 in Eq. (4.46) for i =
0, . . . , p. Under the null hypothesis that xt follows a linear AR(p) model, the
F ratio has a limiting F distribution with degrees of freedom p + 1 and T −
d − m − p.

We refer to the earlier F test as a Tar-F test. The idea behind the test is that under
the null hypothesis there is no model change in the arranged autoregression in
Eq. (4.45) so that the standardized predictive residuals should be close to iid with
mean zero and variance 1. In this case, they should have no correlations with the
regressors x(m+ j)+d−i . For further details including formulas for a recursive least
squares method and some simulation study on performance of the Tar-F test, see
Tsay (1989). The Tar-F test avoids the problem of nuisance parameters encountered
by the likelihood ratio test. It does not require knowing the threshold r1. It simply
tests that the predictive residuals have no correlations with regressors if the null
hypothesis holds. Therefore, the test does not depend on knowing the number of
regimes in the alternative model. Yet the Tar-F test is not as powerful as the likeli-
hood ratio test if the true model is indeed a two-regime SETAR model with a known
innovational distribution.

4.2.3 Applications

In this subsection, we apply some of the nonlinearity tests discussed previously to
five time series. For a real financial time series, an AR model is used to remove any
serial correlation in the data, and the tests apply to the residual series of the model.
The five series employed are as follows:

1. r1t : A simulated series of iid N (0, 1) with 500 observations.
2. r2t : A simulated series of iid Student-t distribution with 6 degrees of freedom.

The sample size is 500.
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3. a3t : The residual series of monthly log returns of CRSP equal-weighted index
from 1926 to 1997 with 864 observations. The linear AR model used is

(1 − 0.180B + 0.099B3 − 0.105B9)r3t = 0.0086 + a3t .

4. a4t : The residual series of monthly log returns of CRSP value-weighted index
from 1926 to 1997 with 864 observations. The linear AR model used is

(1 − 0.098B + 0.111B3 − 0.088B5)r4t = 0.0078 + a4t .

5. a5t : The residual series of monthly log returns of IBM stock from 1926 to 1997
with 864 observations. The linear AR model used is

(1 − 0.077B)r5t = 0.011 + a5t .

Table 4.2 shows the results of nonlinearity test. For the simulated series and IBM
returns, the F tests are based on an AR(6) model. For the index returns, the AR
order is the same as the model given earlier. For the BDS test, we chose δ = σ̂a and
δ = 1.5σ̂a with k = 2, . . . , 5. Also given in the table are the Ljung–Box statistics
that confirm no serial correlation in the residual series before applying nonlinearity
tests. Compared with their asymptotic critical values, the BDS test and the F tests
are insignificant at the 5% level for the simulated series. However, the BDS tests are
highly significant for the real financial time series. The F tests also show significant
results for the index returns, but they fail to suggest nonlinearity in the IBM log

Table 4.2. Nonlinearity Tests for Simulated Series and Some Log Stock Returns. The
Sample Size of Simulated Series is 500 and That of Stock Returns is 864. The BDS Test
Uses k = 2, . . . , 5.

Q Q BDS(δ = 1.5σ̂a)

Data (5) (10) 2 3 4 5

N(0,1) 3.2 6.5 −0.32 −0.14 −0.15 −0.33
t6 0.9 1.7 −0.87 −1.18 −1.56 −1.71
ln(ew) 2.9 4.9 9.94 11.72 12.83 13.65
ln(vw) 1.0 9.8 8.61 9.88 10.70 11.29
ln(ibm) 0.6 7.1 4.96 6.09 6.68 6.82

d = 1 BDS(δ = σ̂a)

Data Ori-F Tar-F 2 3 4 5

N(0,1) 1.13 0.87 −0.77 −0.71 −1.04 −1.27
t6 0.69 0.81 −0.35 −0.76 −1.25 −1.49
ln(ew) 5.05 6.77 10.01 11.85 13.14 14.45
ln(vw) 4.95 6.85 7.01 7.83 8.64 9.53
ln(ibm) 1.32 1.51 3.82 4.70 5.45 5.72
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returns. In summary, the tests confirm that the simulated series are linear and suggest
that the stock returns are nonlinear.

4.3 MODELING

Nonlinear time series modeling necessarily involves subjective judgment. However,
there are some general guidelines to follow. It starts with building an adequate linear
model on which nonlinearity tests are based. For financial time series, the Ljung–Box
statistics and Engle’s test are commonly used to detect conditional heteroscedasticity.
For general series, other tests of Section 4.2 apply. If nonlinearity is statistically sig-
nificant, then one chooses a class of nonlinear models to entertain. The selection here
may depend on the experience of the analyst and the substantive matter of the prob-
lem under study. For volatility models, the order of an ARCH process can often be
determined by checking the partial autocorrelation function of the squared series. For
GARCH and EGARCH models, only lower orders such as (1, 1), (1, 2), and (2, 1)
are considered in most applications. Higher order models are hard to estimate and
understand. For TAR models, one may use the procedures given in Tong (1990) and
Tsay (1989, 1998) to build an adequate model. When the sample size is sufficiently
large, one may apply nonparametric techniques to explore the nonlinear feature of the
data and choose a proper nonlinear model accordingly; see Chen and Tsay (1993a)
and Cai, Fan, and Yao (1999). The MARS procedure of Lewis and Stevens (1991)
can also be used to explore the dynamic structure of the data. Finally, information
criteria such as Akaike information criterion (Akaike, 1974) and the generalized odd
ratios in Chen, McCulloch, and Tsay (1997) can be used to discriminate between
competing nonlinear models. The chosen model should be carefully checked before
it is used for prediction.

4.4 FORECASTING

Unlike the linear model, there exist no closed-form formulas to compute forecasts of
most nonlinear models when the forecast horizon is greater than 1. We use paramet-
ric bootstraps to compute nonlinear forecasts. It is understood that the model used in
forecasting has been rigorously checked and is judged to be adequate for the series
under study. By a model, we mean the dynamic structure and innovational distribu-
tions. In some cases, we may treat the estimated parameters as given.

4.4.1 Parametric Bootstrap

Let T be the forecast origin and � be the forecast horizon (� > 0). That is, we are at
time index T and interested in forecasting xT +�. The parametric bootstrap considered
computes realizations xT +1, . . . , XT +� sequentially by (a) drawing a new innovation
from the specified innovational distribution of the model, and (b) computing xT +i

using the model, data, and previous forecasts xT +1, . . . , xT +i−1. This results in a
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realization for xT +�. The procedure is repeated M times to obtain M realizations of
xT +� denoted by {x ( j)

T +�}M
j=1. The point forecast of xT +� is then the sample average

of x ( j)
T +�. Let the forecast be xT (�). We used M = 3000 in some applications and the

results seem fine. The realizations {x ( j)
T +�}M

j=1 can also be used to obtain an empirical
distribution of xT +�. We make use of this empirical distribution later to evaluate
forecasting performance.

4.4.2 Forecasting Evaluation

There are many ways to evaluate the forecasting performance of a model, rang-
ing from directional measures to magnitude measures to distributional measures.
A directional measure considers the future direction (up or down) implied by the
model. Predicting that tomorrow’s S&P 500 index will go up or down is an example
of directional forecasts that are of practical interest. Predicting the year-end value of
the daily S&P 500 index belongs to the case of magnitude measure. Finally, assessing
the likelihood that the daily S&P 500 index will go up 10% or more between now and
the year end requires knowing the future conditional probability distribution of the
index. Evaluating the accuracy of such an assessment needs a distributional measure.

In practice, the available data set is divided into two subsamples. The first sub-
sample of the data is used to build a nonlinear model, and the second subsample is
used to evaluate the forecasting performance of the model. We refer to the two sub-
samples of data as estimation and forecasting subsamples. In some studies, a rolling
forecasting procedure is used in which a new data point is moved from the fore-
casting subsample into the estimation subsample as the forecast origin advances. In
what follows, we briefly discuss some measures of forecasting performance that are
commonly used in the literature. Keep in mind, however, that there exists no widely
accepted single measure to compare models. A utility function based on the objective
of the forecast might be needed to better understand the comparison.

4.4.2.1 Directional Measure
A typical measure here is to use a 2 × 2 contingency table that summarizes the
numbers of “hits” and “misses” of the model in predicting ups and downs of xT +� in
the forecasting subsample. Specifically, the contingency table is given as

Predicted

Actual up down

up m11 m12 m10

down m21 m22 m20

m01 m02 m

where m is the total number of �-step ahead forecasts in the forecasting subsample,
m11 is the number of “hits” in predicting upward movements, m21 is the number of
“misses” in predicting downward movements of the market, and so on. Larger values
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in m11 and m22 indicate better forecasts. The test statistic

χ2 =
2∑

i=1

2∑
j=1

(mi j − mi0m0 j
m )2

mi0m0 j
m

can then be used to evaluate the performance of the model. A large χ2 signifies that
the model outperforms the chance of random choice. Under some mild conditions,
χ2 has an asymptotic chi-squared distribution with 1 degree of freedom. For further
discussion of this measure, see Dahl and Hylleberg (1999).

For illustration of the directional measure, consider the 1-step ahead probability
forecasts of the 8-4-1 feed-forward neural network shown in Figure 4.6. The 2 × 2
table of “hits” and “misses” of the network is

Predicted

Actual up down

up 12 2 14
down 8 2 10

20 4 24

The table shows that the network predicts the upward movement well, but fares
poorly in forecasting the downward movement of the stock. The chi-squared statistic
of the table is 0.137 with p value 0.71. Consequently, the network does not signifi-
cantly outperform a random walk model with equal probabilities for “upward” and
“downward” movements.

4.4.2.2 Magnitude Measure
Three statistics are commonly used to measure performance of point forecasts. They
are the mean squared error (MSE), mean absolute deviation (MAD), and mean abso-
lute percentage error (MAPE). For �-step ahead forecasts, these measures are defined
as

M SE(�) = 1

m

m−1∑
j=0

[xT+�+ j − xT + j (�)]2 (4.47)

M AD(�) = 1

m

m−1∑
j=0

| xT +�+ j − xT + j (�) | (4.48)

M AP E(�) = 1

m

m−1∑
j=0

∣∣∣∣ xT + j (�)

xT + j+�
− 1

∣∣∣∣ , (4.49)

where m is the number of �-step ahead forecasts available in the forecasting sub-
sample. In application, one often chooses one of the above three measures, and the
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model with the smallest magnitude on that measure is regarded as the best �-step
ahead forecasting model. It is possible that different � may result in selecting differ-
ent models. The measures also have other limitations in model comparison; see, for
instance, Clements and Hendry (1993).

4.4.2.3 Distributional Measure
Practitioners recently began to assess forecasting performance of a model using
its predictive distributions. Strictly speaking, a predictive distribution incorporates
parameter uncertainty in forecasts. We call it conditional predictive distribution if
the parameters are treated as fixed. The empirical distribution of xT +� obtained by
the parametric bootstrap is a conditional predictive distribution. This empirical distri-
bution is often used to compute a distributional measure. Let uT (�) be the percentile
of the observed xT +� in the prior empirical distribution. We then have a set of m
percentiles {uT + j (�)}m−1

j=0 , where again m is the number of �-step ahead forecasts in
the forecasting subsample. If the model entertained is adequate, {uT + j (�)} should
be a random sample from the uniform distribution on [0, 1]. For a sufficiently large
m, one can compute the Kolmogorov–Smirnov statistic of {uT + j (�)} with respect
to uniform [0, 1]. The statistic can be used for both model checking and forecasting
comparison.

4.5 APPLICATION

In this section, we illustrate nonlinear time series models by analyzing the quarterly
U.S. civilian unemployment rate, seasonally adjusted, from 1948 to 1993. This series
was analyzed in detail by Montgomery, Zarnowitz, Tsay, and Tiao (1998). We repeat
some of the analyses here using nonlinear models. Figure 4.8 shows the time plot of
the data. Well-known characteristics of the series include that (a) it tends to move
countercyclically with U.S. business cycles, and (b) the rate rises quickly, but decays
slowly. The latter characteristic suggests that the dynamic structure of the series is
nonlinear.

Denote the series by xt and let �xt = xt − xt−1 be the change in unemployment
rate. The linear model

(1 − 0.31B4)(1 − 0.65B)�xt = (1 − 0.78B4)at , σ̂ 2
a = 0.090 (4.50)

was built by Montgomery et al. (1998), where the standard errors of the three coef-
ficients are 0.11, 0.06, and 0.07, respectively. This is a seasonal model even though
the data were seasonally adjusted. It indicates that the seasonal adjustment procedure
used did not successfully remove the seasonality. This model is used as a benchmark
model for forecasting comparison.

To test for nonlinearity, we apply some of the nonlinearity tests of Section 4.2 with
an AR(5) model for the differenced series �xt . The results are given in Table 4.3.
All of the tests reject the linearity assumption. In fact, the linearity assumption is
rejected for all AR(p) models we applied, where p = 2, . . . , 10.
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Figure 4.8. Time plot of the U.S. quarterly unemployment rate, seasonally adjusted, from
1948 to 1993.

Using a modeling procedure similar to that of Tsay (1989), Montgomery et al.
(1998) build the following TAR model for the �xt series:

�xt =
{

0.01 + 0.73�xt−1 + 0.10�xt−2 + a1t if �xt−2 ≤ 0.1,

0.18 + 0.80�xt−1 − 0.56�xt−2 + a2t otherwise.
(4.51)

The sample variances of a1t and a2t are 0.76 and 0.165, respectively, the standard
errors of the three coefficients of Regime 1 are 0.03, 0.10, and 0.12, respectively,
and those of Regime 2 are 0.09, 0.1, and 0.16. This model says that the change in
the U.S. quarterly unemployment rate,�xt , behaves like a piecewise linear model in
the reference space of xt−2 − xt−3 with threshold 0.1. Intuitively, the model implies
that the dynamics of unemployment act differently depending on the recent change
in the unemployment rate. In the first regime, the unemployment rate has had either

Table 4.3. Nonlinearity Test for Changes in the U.S. Quarterly Unemployment Rate:
1948.II-1993.IV. An AR(5) Model Was Used in the Tests, Where LST Denotes the Test of
Luukkonen et al. (1988) and TAR(d) Means Threshold Test with Delay d.

Type Ori-F LST TAR(1) TAR(2) TAR(3) TAR(4)

Test 2.80 2.83 2.41 2.16 2.84 2.98
p value .0007 .0002 .0298 .0500 .0121 .0088
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a decrease or a minor increase. Here the economy should be stable, and essentially
the change in the rate follows a simple AR(1) model because the lag-2 coefficient is
insignificant. In the second regime, there is a substantial jump in the unemployment
rate (0.1 or larger). This typically corresponds to the contraction phase in the busi-
ness cycle. It is also the period during which government interventions and industrial
restructuring are likely to occur. Here �xt follows an AR(2) model with a posi-
tive constant, indicating an upward trend in xt . The AR(2) polynomial contains two
complex characteristic roots, which indicate possible cyclical behavior in �xt . Con-
sequently, the chance of having a turning point in xt increases, suggesting that the
period of large increases in xt should be short. This implies that the contraction
phases in the U.S. economy tend to be shorter than the expansion phases.

Applying a Markov Chain Monte Carlo method, Montgomery et al. (1998) obtain
the following Markov switching model for �xt :

�xt =
{−0.07 + 0.38�xt−1 − 0.05�xt−2 + ε1t if st = 1

0.16 + 0.86�xt−1 − 0.38�xt−2 + ε2t if st = 2.
(4.52)

The conditional means of �xt are −0.10 for st = 1 and 0.31 for st = 2. Thus,
the first state represents the expansionary periods in the economy, and the second
state represents the contractions. The sample variances of ε1t and ε2t are 0.031 and
0.192, respectively. The standard errors of the three parameters in state st = 1 are
0.03, 0.14, and 0.11, and those of state st = 2 are 0.04, 0.13, and 0.14, respectively.
The state transition probabilities are P(st = 2 | st−1 = 1) = 0.084(0.060) and
P(st = 1 | st−1 = 2) = 0.126(0.053), where the number in parentheses is the
corresponding standard error. This model implies that in the second state the unem-
ployment rate xt has an upward trend with an AR(2) polynomial possessing complex
characteristic roots. This feature of the model is similar to the second regime of the
TAR model in Eq. (4.51). In the first state, the unemployment rate xt has a slightly
decreasing trend with a much weaker autoregressive structure.

Forecasting Performance
A rolling procedure was used by Montgomery et al. (1998) to forecast the unemploy-
ment rate xt . The procedure works as follows:

1. Begin with forecast origin T = 83, corresponding to 1968.II which was used
in the literature to monitor performance of various econometric models in fore-
casting unemployment rate. Estimate the linear, TAR, and MSA models using
the data from 1948.I to the forecast origin (inclusive).

2. Perform 1-quarter to 5-quarter ahead forecasts and compute the forecast errors
of each model. Forecasts of nonlinear models used are computed by using the
parametric bootstrap method of Section 4.4.

3. Advance the forecast origin by 1 and repeat the estimation and forecasting
processes until all data are employed.

4. Use MSE and mean forecast error to compare performance of the models.
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Table 4.4. Out-of-Sample Forecast Comparison Among Linear, TAR, and MSA Models
for the U.S. Quarterly Unemployment Rate. The Starting Forecast Origin is 1968.II,
Where the Row Marked by “MSE” Shows the MSE of the Benchmark Linear Model.

(A) Relative MSE of forecast

Model 1-step 2-step 3-step 4-step 5-step

(a) Overall comparison

Linear 1.00 1.00 1.00 1.00 1.00
TAR 1.00 1.04 0.99 0.98 1.03
MSA 1.19 1.39 1.40 1.45 1.61
MSE 0.08 0.31 0.67 1.13 1.54

(b) Forecast origins in economic contractions

Linear 1.00 1.00 1.00 1.00 1.00
TAR 0.85 0.91 0.83 0.72 0.72
MSA 0.97 1.03 0.96 0.86 1.02
MSE 0.22 0.97 2.14 3.38 3.46

(c) Forecast origins in economic expansions

Linear 1.00 1.00 1.00 1.00 1.00
TAR 1.06 1.13 1.10 1.15 1.17
MSA 1.31 1.64 1.73 1.84 1.87
MSE 0.06 0.21 0.45 0.78 1.24

(B) Mean of forecast errors

Model 1-step 2-step 3-step 4-step 5-step

(a) Overall comparison

Linear .03 .09 .17 .25 .33
TAR −.10 −.02 −.03 −.03 −.01
MSA .00 −.02 −.04 −.07 −.12

(b) Forecast origins in economic contractions

Linear 0.31 0.68 1.08 1.41 1.38
TAR 0.24 0.56 0.87 1.01 0.86
MSA 0.20 0.41 0.57 0.52 0.14

(c) Forecast origins in economic expansions

Linear −.01 .00 .03 .08 .17
TAR −.05 −.11 −.17 −.19 −.14
MSA −.03 −.08 −.13 −.17 −.16
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Table 4.4 shows the relative MSE of forecasts and mean forecast errors for the
linear model in Eq. (4.50), the TAR model in Eq. (4.51), and the MSA model in
Eq. (4.52), using the linear model as a benchmark. The comparisons are based on
overall performance as well as the status of the U.S. economy at the forecast origin.
From the table, we make the following observations:

1. For the overall comparison, TAR model and the linear model are very close
in MSE, but the TAR model has smaller biases. Yet the MSA model has the
highest MSE, but smallest biases.

2. For forecast origins in economic contractions, the TAR model shows improve-
ments over the linear model both in MSE and bias. The MSA model also shows
some improvement over the linear model, but the improvement is not as large
as that of the TAR model.

3. For forecast origins in economic expansions, the linear model outperforms
both nonlinear models.

The results suggest that the contributions of nonlinear models over linear ones in
forecasting the U.S. quarterly unemployment rate are mainly in the periods when the
U.S. economy is in contractions. This is not surprising because, as mentioned before,
it is during the economic contractions that government interventions and industrial
restructuring are most likely to occur. These external events could introduce nonlin-
earity in the U.S. unemployment rate. Intuitively, such improvements are important
because it is during the contractions that people pay more attention to economic
forecasts.

APPENDIX A. SOME RATS PROGRAMS FOR NONLINEAR
VOLATILITY MODELS

A. This program was used to estimate an AR(2)-TAR-GARCH(1, 1) model
for daily log returns of IBM stock. The data file is “d-ibmln99.dat.”

all 0 9442:1
open data d-ibmln99.dat
data(org=obs) / rt
set h = 0.0
*nonlin mu p1 p2 a0 a1 a2 b0 b1 b2
nonlin mu p2 a1 a2 b0 b1 b2
*frml at = rt(t)-mu-p1*rt(t-1)-p2*rt(t-2)
frml at = rt(t)-mu-p2*rt(t-2)
frml u = (at(t-1)/abs(at(t-1))+1.0)/2.0
frml gvar1 = a1*at(t-1)**2+a2*h(t-1)
frml gvar = gvar1(t)+u(t)*(b0+b1*at(t-1)**2+b2*h(t-1))
frml garchln = -0.5*log(h(t)=gvar(t))-0.5*at(t)**2/h(t)
smpl 4 9442
compute mu = 0.03, p1 = 0.1, p2 = -0.03
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compute a0 = 0.1, a1 = 0.1, a2 = 0.6, b0 = 0.1, b1 = 0.05
compute b2 = 0.1, a3 = 0.1, b3 = 0.1
maximize(method=simplex,iterations=10) garchln
smpl 4 9442
maximize(method=bhhh,recursive,iterations=150) garchln
set fv = gvar(t)
set resid = at(t)/sqrt(fv(t))
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

B. This program was used to estimate a smooth TAR model for the monthly
simple returns of 3M stock. The data file is “m-mmm.dat.”

all 0 623:1
open data m-mmm.dat
data(org=obs) / mmm
set h = 0.0
nonlin a0 a1 a2 a00 a11 mu
frml at = mmm(t) - mu
frml var1 = a0+a1*at(t-1)**2+a2*at(t-2)**2
frml var2 = a00+a11*at(t-1)**2
frml gvar = var1(t)+var2(t)/(1.0+exp(-at(t-1)*1000.0))
frml garchlog = -0.5*log(h(t)=gvar(t))-0.5*at(t)**2/h(t)
smpl 3 623
compute a0 = .01, a1 = 0.2, a2 = 0.1
compute a00 = .01, a11 = -.2, mu = 0.02
maximize(method=bhhh,recursive,iterations=150) garchlog
set fv = gvar(t)
set resid = at(t)/sqrt(fv(t))
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

APPENDIX B. S-PLUS COMMANDS FOR NEURAL NETWORK

The following commands are used in S-Plus to build the 3-2-1 skip-layer feed-
forward network of Example 4.5. A line starting with “#” denotes comment. The
data file is “m-ibmln.dat.”

# load the data into S-Plus workspace.
x_scan(file=’m-ibmln.dat’)
# select the output: r(t)
y_x[4:864]
# obtain the input variables: r(t-1), r(t-2), and r(t-3)
ibm.x_cbind(x[3:863],x[2:862],x[1:861])
# build a 3-2-1 network with skip layer connections
# and linear output.
ibm.nn_nnet(ibm.x,y,size=2,linout=T,skip=T,maxit=10000,
decay=1e-2,reltol=1e-7,abstol=1e-7,range=1.0)
# print the summary results of the network
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summary(ibm.nn)
# compute \& print the residual sum of squares.
sse_sum((y-predict(ibm.nn,ibm.x))ˆ2)
print(sse)
#eigen(nnet.Hess(ibm.nn,ibm.x,y),T)$values
# setup the input variables in the forecasting subsample
ibm.p_cbind(x[864:887],x[863:886],x[862:885])
# compute the forecasts
yh_predict(ibm.nn,ibm.p)
# The observed returns in the forecasting subsample
yo_x[865:888]
# compute \& print the sum of squares of forecast errors
ssfe_sum((yo-yh)ˆ2)
print(ssfe)
# quit S-Plus
q()

EXERCISES

1. Consider the monthly log returns of General Electric (GE) stock from January
1926 to December 1999. You may download the data from CRSP or use the file
“m-ge2699.dat” on the Web. The log returns in the file are in percentages. Build a
threshold GARCH model for the series using at−1 as the threshold variable with
zero threshold, where at−1 is the shock at time t − 1. Check the fitted model.

2. Suppose that the monthly log returns of GE stock, measured in percentages, fol-
lows a smooth threshold GARCH(1, 1)model. For the sampling period from Jan-
uary 1926 to December 1999, the fitted model is

rt = 1.06 + at , at = σtεt

σ 2
t = 0.103a2

t−1 + 0.952σ 2
t−1 + 1

1 + exp(−10at−1)
(4.490 − 0.193σ 2

t−1),

where all of the estimates are highly significant, the coefficient 10 in the exponent
is fixed a priori to simplify the estimation, and {εt } are iid N (0, 1). Assume that
a888 = 16.0 and σ 2

888 = 50.2, what is the 1-step ahead volatility forecast σ̂ 2
888(1)?

Suppose instead that a888 = −16.0, what is the 1-step ahead volatility forecast
σ̂ 2

888(1)?

3. Suppose that the monthly log returns, in percentages, of a stock follow the fol-
lowing Markov switching model

rt = 1.25 + at , at = σtεt

σ 2
t =

{
0.10a2

t−1 + 0.93σ 2
t−1 if st = 1

4.24 + 0.10a2
t−1 + 0.78σ 2

t−1 if st = 2,

where the transition probabilities are
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P(st = 2 | st−1 = 1) = 0.15, P(st = 1 | st−1 = 2) = 0.05.

Suppose that a100 = 6.0, σ 2
100 = 50.0 and s100 = 2 with probability 1.0; what

is the 1-step ahead volatility forecast at the forecast origin t = 100? Also, if
the probability of s100 = 2 is reduced to 0.8, what is the 1-step ahead volatility
forecast at the forecast origin t = 100?

4. Again, consider the monthly log returns of GE stock from January 1926 to
December 1999. Reserve the returns in 1998 and 1999 for forecasting evaluation.

• Fit a 3-2-1 feed-forward neural network to the return series and calculate
the mean squared error of the 1-step ahead forecasts in the forecasting sub-
sample. Write down the biases and weights of the network in the estimation
subsample.

• Suppose that we are interested in forecasting the direction of the 1-month
ahead stock movement. Fit a 6-5-1 feed-forward neural network to the return
series using a Heaviside function for the output node. Compute the 1-step
ahead forecasts in the forecasting subsample and compare them with the
actual movements.

5. Because of the existence of inverted yield curves in the term structure of interest
rates, the spread of interest rates should be nonlinear. To verify this, consider
the weekly U.S. interest rates of (a) Treasury 1-year constant maturity rate, and
(b) Treasury 3-year constant maturity rate. As in Chapter 2, denote the two interest
rates by r1t and r3t , respectively, and the data span is from January 5, 1962 to
September 10, 1999. The data are in files “wgs3yr.dat” and “wgs1yr.dat” on the
Web.

• Let st = r3t − r1t be the spread in log interest rates. Is {st } linear? Perform
some nonlinearity tests and draw the conclusion using the 5% significance
level.

• Let s∗
t = (r3t − r3,t−1)− (r1t − r1,t−1) = st − st−1 be the change in interest

rate spread. Is {s∗
t } linear? Perform some nonlinearity tests and draw the

conclusion using the 5% significance level.
• Build a threshold model for the st series and check the fitted model.
• Build a threshold model for the s∗

t series and check the fitted model.
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C H A P T E R 5

High-Frequency Data Analysis
and Market Microstructure

High-frequency data are observations taken at fine time intervals. In finance, they
often mean observations taken daily or at a finer time scale. These data have become
available primarily due to advances in data acquisition and processing techniques,
and they have attracted much attention because they are important in empirical
study of market microstructure. The ultimate high-frequency data in finance are the
transaction-by-transaction or trade-by-trade data in security markets. Here time is
often measured in seconds. The Trades and Quotes (TAQ) database of the New York
Stock Exchange (NYSE) contains all equity transactions reported on the Consoli-
dated Tape from 1992 to present, which includes transactions on NYSE, AMEX,
NASDAQ, and the regional exchanges. The Berkeley Options Data Base provides
similar data for options transactions from August 1976 to December 1996. Trans-
actions data for many other securities and markets, both domestic and foreign,
are continuously collected and processed. Wood (2000) provides some historical
perspective of high-frequency financial study.

High-frequency financial data are important in studying a variety of issues related
to trading process and market microstructure. They can be used to compare the effi-
ciency of different trading systems in price discovery (e.g., the open out-cry system
of NYSE and the computer trading system of NASDAQ). They can also be used to
study the dynamics of bid and ask quotes of a particular stock (e.g., Hasbrouck, 1999;
Zhang, Russell, and Tsay, 2001b). In an order-driven stock market (e.g., the Taiwan
Stock Exchange), high-frequency data can be used to study the order dynamic and,
more interesting, to investigate the question “who provides the market liquidity.”
Cho, Russell, Tiao, and Tsay (2000) use intraday 5-minute returns of more than 340
stocks traded in the Taiwan Stock Exchange to study the impact of daily stock price
limits and find significant evidence of magnet effects toward the price ceiling.

However, high-frequency data have some unique characteristics that do not appear
in lower frequencies. Analysis of these data thus introduces new challenges to finan-
cial economists and statisticians. In this chapter, we study these special characteris-
tics, consider methods for analyzing high-frequency data, and discuss implications
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of the results obtained. In particular, we discuss nonsynchronous trading, bid-ask
spread, duration models, price movements that are in multiples of tick size, and
bivariate models for price changes and time durations between transactions associ-
ated with price changes. The models discussed are also applicable to other scientific
areas such as telecommunications and environmental studies.

5.1 NONSYNCHRONOUS TRADING

We begin with nonsynchronous trading. Stock tradings such as those on the NYSE
do not occur in a synchronous manner; different stocks have different trading fre-
quencies, and even for a single stock the trading intensity varies from hour to hour
and from day to day. Yet we often analyze a return series in a fixed time interval such
as daily, weekly, or monthly. For daily series, price of a stock is its closing price,
which is the last transaction price of the stock in a trading day. The actual time of the
last transaction of the stock varies from day to day. As such we incorrectly assume
daily returns as an equally-spaced time series with a 24-hour interval. It turns out
that such an assumption can lead to erroneous conclusions about the predictability
of stock returns even if the true return series are serially independent.

For daily stock returns, nonsynchronous trading can introduce (a) lag-1 cross-
correlation between stock returns, (b) lag-1 serial correlation in a portfolio return,
and (c) in some situations negative serial correlations of the return series of a single
stock. Consider stocks A and B. Assume that the two stocks are independent and
stock A is traded more frequently than stock B. For special news affecting the market
that arrives near the closing hour on one day, stock A is more likely than B to show
the effect of the news on the same day simply because A is traded more frequently.
The effect of the news on B will eventually appear, but it may be delayed until the
following trading day. If this situation indeed happens, return of stock A appears
to lead that of stock B. Consequently, the return series may show a significant lag-
1 cross-correlation from A to B even though the two stocks are independent. For
a portfolio that holds stocks A and B, the prior cross-correlation would become a
significant lag-1 serial correlation.

In a more complicated manner, nonsynchronous trading can also induce erroneous
negative serial correlations for a single stock. There are several models available in
the literature to study this phenomenon; see Campbell, Lo, and MacKinlay (1997)
and the references therein. Here we adopt a simplified version of the model pro-
posed in Lo and MacKinlay (1990). Let rt be the continuously compounded return
of a security at the time index t . For simplicity, assume that {rt } is a sequence of
independent and identically distributed random variables with mean E(rt ) = µ and
variance Var(rt ) = σ 2. For each time period, the probability that the security is not
traded is π , which is time-invariant and independent of rt . Let ro

t be the observed
return. When there is no trade at time index t , we have ro

t = 0 because there is
no information available. Yet when there is a trade at time index t , we define ro

t as
the cumulative return from the previous trade (i.e., ro

t = rt + rt−1 + · · · + rt−kt ,
where kt is the largest non-negative integer such that no trade occurred in the periods
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t − kt , t − kt + 1, . . . , t − 1). Mathematically, the relationship between rt and ro
t is

ro
t =



0 with probability π
rt with probability (1 − π)2

rt + rt−1 with probability (1 − π)2π

rt + rt−1 + rt−2 with probability (1 − π)2π2

...
...∑k

i=0 rt−i with probability (1 − π)2πk−1

...
...

(5.1)

These probabilities are easy to understand. For example, ro
t = rt if and only if there

are trades at both t and t − 1, ro
t = rt + rt−1 if and only if there are trades at t and

t − 2, but no trade at t − 1, and ro
t = rt + rt−1 + rt−2 if and only if there are trades

at t and t − 3, but no trades at t − 1 and t − 2, and so on. As expected, the total
probability is 1 given by

π + (1 − π)2[1 + π + π2 + · · ·] = π + (1 − π)2
1

1 − π
= π + 1 − π = 1.

We are ready to consider the moment equations of the observed return series {ro
t }.

First, the expectation of ro
t is

E(ro
t ) = (1 − π)2 E(rt )+ (1 − π)2πE(rt + rt−1)+ · · ·

= (1 − π)2µ+ (1 − π)2π2µ+ (1 − π)2π23µ+ · · ·
= (1 − π)2µ[1 + 2π + 3π2 + 4π3 + · · ·]
= (1 − π)2µ

1

(1 − π)2
= µ. (5.2)

In the prior derivation, we use the result 1 + 2π + 3π2 + 4π3 + · · · = 1
(1−π)2 . Next,

for the variance of ro
t , we use Var(ro

t ) = E[(ro
t )

2] − [E(ro
t )]2 and

E(ro
t )

2 = (1 − π)2 E[(rt )
2] + (1 − π)2πE[(rt + rt−1)

2] + · · ·
= (1 − π)2[(σ 2 + µ2)+ π(2σ 2 + 4µ2)+ π2(3σ 2 + 9µ2)+ ·] (5.3)

= (1 − π)2{σ 2[1 + 2π + 3π2 + · · ·] + µ2[1 + 4π + 9π2 + · · ·]} (5.4)

= σ 2 + µ2
[

2

1 − π
− 1

]
. (5.5)

In Eq. (5.3), we use

E

(
k∑

i=0

rt−i

)2

= Var

(
k∑

i=0

rt−i

)
+
[

E

(
k∑

i=0

rt−i

)]2

= (k + 1)σ 2 + [(k + 1)µ]2
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under the serial independence assumption of rt . Using techniques similar to that of
Eq. (5.2), we can show that the first term of Eq. (5.4) reduces to σ 2. For the second
term of Eq. (5.4), we use the identity

1 + 4π + 9π2 + 16π3 + · · · = 2

(1 − π)3
− 1

(1 − π)2
,

which can be obtained as follows: Let

H = 1 + 4π + 9π2 + 16π3 + · · · and G = 1 + 3π + 5π2 + 7π3 + · · · .
Then (1 − π)H = G and

(1 − π)G = 1 + 2π + 2π2 + 2π3 + · · ·
= 2(1 + π + π2 + · · ·)− 1 = 2

(1 − π)
− 1.

Consequently, from Eqs. (5.2) and (5.5), we have

Var(ro
t ) = σ 2 + µ2

[
2

1 − π
− 1

]
− µ2 = σ 2 + 2πµ2

1 − π
. (5.6)

Consider next the lag-1 autocovariance of {ro
t }. Here we use Cov(ro

t , r
o
t−1) =

E(ro
t ro

t−1)− E(r0
t )E(r

o
t−1) = E(ro

t ro
t−1)−µ2. The question then reduces to finding

E(ro
t ro

t−1). Notice that ro
t ro

t−1 is zero if there is no trade at t , no trade at t − 1, or no
trade at both t and t − 1. Therefore, we have

ro
t ro

t−1 =



0 with probability 2π − π2

rtrt−1 with probability (1 − π)3

rt (rt−1 + rt−2) with probability (1 − π)3π

rt (rt−1 + rt−2 + rt−3) with probability (1 − π)3π2

...
...

rt (
∑k

i=1 rt−i ) with probability (1 − π)3πk−1

...
...

(5.7)

Again the total probability is unity. To understand the prior result, notice that
ro

t ro
t−1 = rtrt−1 if and only if there are three consecutive trades at t − 2, t − 1,

and t . Using Eq. (5.7) and the fact that E(rtrt− j ) = E(rt )E(rt− j ) = µ2 for j > 0,
we have

E(ro
t ro

t−1) = (1 − π)3{E(rtrt−1)+ πE[rt (rt−1 + rt−2)]

+ π2 E

[
rt

(
3∑

i=1

rt−i

)]
+ · · ·}

= (1 − π)3µ2[1 + 2π + 3π2 + · · ·] = (1 − π)µ2.



BID-ASK SPREAD 179

The lag-1 autocovariance of {ro
t } is then

Cov(ro
t , r

o
t−1) = −πµ2. (5.8)

Provided that µ is not zero, the nonsynchronous trading induces a negative lag-1
autocorrelation in ro

t given by

ρ1(r
o
t ) = −(1 − π)πµ2

(1 − π)σ 2 + 2πµ2
.

In general, we can extend the prior result and show that

Cov(ro
t , r

o
t− j ) = −µ2π j , j ≥ 1.

The magnitude of the lag-1 ACF depends on the choices of µ, π , and σ and can
be substantial. Thus, when µ 
= 0, the nonsynchronous trading induces negative
autocorrelations in an observed security return series.

The previous discussion can be generalized to the return series of a portfolio that
consists of N securities; see Campbell, Lo, and MacKinlay (1997, Chapter 3). In
the time series literature, effects of nonsynchronous trading on the return of a single
security are equivalent to that of random temporal aggregation on a time series, with
the trading probability π governing the mechanism of aggregation.

5.2 BID-ASK SPREAD

In some stock exchanges (e.g., NYSE) market makers play an important role in facil-
itating trades. They provide market liquidity by standing ready to buy or sell when-
ever the public wishes to sell or buy. By market liquidity, we mean the ability to buy
or sell significant quantities of a security quickly, anonymously, and with little price
impact. In return for providing liquidity, market makers are granted monopoly rights
by the exchange to post different prices for purchases and sales of a security. They
buy at the bid price Pb and sell at a higher ask price Pa . (For the public, Pb is the
sale price and Pa is the purchase price.) The difference Pa − Pb is call the bid-ask
spread, which is the primary source of compensation for market makers. Typically,
the bid-ask spread is small—namely, one or two ticks.

The existence of bid-ask spread, although small in magnitude, has several impor-
tant consequences in time series properties of asset returns. We briefly discuss the
bid-ask bounce—namely, the bid-ask spread introduces negative lag-1 serial corre-
lation in an asset return. Consider the simple model of Roll (1984). The observed
market price Pt of an asset is assumed to satisfy

Pt = P∗
t + It

S

2
, (5.9)
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where S = Pa − Pb is the bid-ask spread, P∗
t is the time-t fundamental value of the

asset in a frictionless market, and {It } is a sequence of independent binary random
variables with equal probabilities (i.e., It = 1 with probability 0.5 and = −1 with
probability 0.5). The It can be interpreted as an order-type indicator, with 1 signify-
ing buyer-initiated transaction and −1 seller-initiated transaction. Alternatively, the
model can be written as

Pt = P∗
t +

{+S/2 with probability 0.5,
−S/2 with probability 0.5.

If there is no change in P∗
t , then the observed process of price changes is

�Pt = (It − It−1)
S

2
. (5.10)

Under the assumption of It in Eq. (5.9), E(It) = 0 and Var(It ) = 1, and we have
E(�Pt ) = 0 and

Var(�Pt ) = S2/2 (5.11)

Cov(�Pt ,�Pt−1) = −S2/4 (5.12)

Cov(�Pt ,�Pt− j ) = 0, j > 1. (5.13)

Therefore, the autocorrelation function of �Pt is

ρ j (�Pt ) =
{−0.5 if j = 1,

0 if j > 1.
(5.14)

The bid-ask spread thus introduces a negative lag-1 serial correlation in the series
of observed price changes. This is referred to as the bid-ask bounce in the finance
literature. Intuitively, the bounce can be seen as follows. Assume that the fundamen-
tal price P∗

t is equal to (Pa + Pb)/2. Then Pt assumes the value Pa or Pb. If the
previously observed price is Pa (the higher value), then the current observed price is
either unchanged or lower at Pb. Thus, �Pt is either 0 or −S. However, if the pre-
vious observed price is Pb (the lower value), then �Pt is either 0 or S. The negative
lag-1 correlation in �Pt becomes apparent. The bid-ask spread does not introduce
any serial correlation beyond lag 1, however.

A more realistic formulation is to assume that P∗
t follows a random walk so that

�P∗
t = P∗

t − P∗
t−1 = εt , which forms a sequence of independent and identically

distributed random variables with mean zero and variance σ 2. In addition, {εt } is
independent of {It }. In this case, Var(�Pt ) = σ 2 + S2/2, but Cov(�Pt ,�Pt− j )

remains unchanged. Therefore,

ρ1(�Pt ) = −S2/4

S2/2 + σ 2
≤ 0.
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The magnitude of lag-1 autocorrelation of �Pt is reduced, but the negative effect
remains when S = Pa − Pb > 0. In finance, it might be of interest to study the
components of the bid-ask spread. Interested readers are referred to Campbell, Lo,
and MacKinlay (1997) and the references therein.

The effect of bid-ask spread continues to exist in portfolio returns and in multivari-
ate financial time series. Consider the bivariate case. Denote the bivariate order-type
indicator by It = (I1t , I2t )

′, where I1t is for the first security and I2t for the second
security. If I1t and I2t are contemporaneously correlated, then the bid-ask spreads
can introduce negative lag-1 cross-correlations.

5.3 EMPIRICAL CHARACTERISTICS OF TRANSACTIONS DATA

Let ti be the calendar time, measured in seconds from midnight, at which the i-th
transaction of an asset takes place. Associated with the transaction are several vari-
ables such as the transaction price, the transaction volume, the prevailing bid and ask
quotes, and so on. The collection of ti and the associated measurements are referred
to as the transactions data. These data have several important characteristics that do
not exist when the observations are aggregated over time. Some of the characteristics
are given next.

1. Unequally spaced time intervals: Transactions such as stock tradings on an
exchange do not occur at equally spaced time intervals. As such the observed
transaction prices of an asset do not form an equally spaced time series. The
time duration between trades becomes important and might contain useful
information about market microstructure (e.g., trading intensity).

2. Discrete-valued prices: The price change of an asset from one transaction to
the next only occurs in multiples of tick size. In the NYSE, the tick size was
one eighth of a dollar before June 24, 1997, and was one sixteenth of a dollar
before January 29, 2001. All NYSE and AMEX stocks started to trade in dec-
imals on January 29, 2001. Therefore, the price is a discrete-valued variable in
transactions data. In some markets, price change may also be subject to limit
constraints set by regulators.

3. Existence of a daily periodic or diurnal pattern: Under the normal trading con-
ditions, transaction activity can exhibit periodic pattern. For instance, in the
NYSE, transactions are heavier at the beginning and closing of the trading
hours and thinner during the lunch hours, resulting in a “U-shape” transac-
tion intensity. Consequently, time durations between transactions also exhibit
a daily cyclical pattern.

4. Multiple transactions within a single second: It is possible that multiple trans-
actions, even with different prices, occur at the same time. This is partly due
to the fact that time is measured in seconds that may be too long a time scale
in periods of heavy tradings.
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Table 5.1. Frequencies of Price Change in Multiples of Tick Size for IBM Stock from
November 1, 1990 to January 31, 1991.

Number (tick) ≤ −3 −2 −1 0 1 2 ≥ 3

Percentage 0.66 1.33 14.53 67.06 14.53 1.27 0.63

To demonstrate these characteristics, we consider first the IBM transactions data
from November 1, 1990 to January 31, 1991. These data are from the Trades, Orders
Reports, and Quotes (TORQ) dataset; see Hasbrouck (1992). There are 63 trading
days and 60,328 transactions. To simplify the discussion, we ignore the price changes
between trading days and focus on the transactions that occurred in the normal trad-
ing hours from 9:30 am to 4:00 pm Eastern Time. It is well known that overnight
stock returns differ substantially from intraday returns; see Stoll and Whaley (1990)
and the references therein. Table 5.1 gives the frequencies in percentages of price
change measured in the tick size of $1/8 = $0.125. From the table, we make the
following observations:

1. About two-thirds of the intraday transactions were without price change.

2. The price changed in one tick approximately 29% of the intraday transactions.

3. Only 2.6% of the transactions were associated with two-tick price changes.

4. Only about 1.3% of the transactions resulted in price changes of three ticks or
more.

5. The distribution of positive and negative price changes was approximately
symmetric.

Consider next the number of transactions in a 5-minute time interval. Denote the
series by xt . That is, x1 is the number of IBM transactions from 9:30 am to 9:35 am
on November 1, 1990 Eastern time, x2 is the number of transactions from 9:35 am to
9:40 am, and so on. The time gaps between trading days are ignored. Figure 5.1(a)
shows the time plot of xt , and Figure 5.1(b) the sample ACF of xt for lags 1 to 260. Of
particular interest is the cyclical pattern of the ACF with a periodicity of 78, which
is the number of 5-minute intervals in a trading day. The number of transactions
thus exhibits a daily pattern. To further illustrate the daily trading pattern, Figure 5.2
shows the average number of transactions within 5-minute time intervals over the 63
days. There are 78 such averages. The plot exhibits a “smiling” or “U” shape, indi-
cating heavier tradings at the opening and closing of the market and thinner tradings
during the lunch hours.

Since we focus on transactions that occurred in the normal trading hours of a
trading day, there are 59,838 time intervals in the data. These intervals are called the
intraday durations between trades. For IBM stock, there were 6531 zero time inter-
vals. That is, during the normal trading hours of the 63 trading days from Novem-
ber 1, 1990 to January 31, 1991, multiple transactions in a second occurred 6531
times, which is about 10.91%. Among these multiple transactions, 1002 of them had
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Figure 5.1. IBM intraday transactions data from 11/01/90 to 1/31/91: (a) the number of trans-
actions in 5-minute time intervals, and (b) the sample ACF of the series in part(a).
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are 78 observations, averaging over the 63 trading days from 11/01/90 to 1/31/91 for IBM
stock.
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Table 5.2. Two-Way Classification of Price Movements in Consecutive Intraday Trades
for IBM Stock. The Price Movements Are Classified Into “Up,” “Unchanged,” and
“Down.” The Data Span is From 11/01/90 to 1/31/91.

i th trade

(i − 1)th trade “+” “0” “−” Margin

“+” 441 5498 3948 9887
“0” 4867 29779 5473 40119
“−” 4580 4841 410 9831

Margin 9888 40118 9831 59837

different prices, which is about 1.67% of the total number of intraday transactions.
Therefore, multiple transactions (i.e., zero durations) may become an issue in statis-
tical modeling of the time durations between trades.

Table 5.2 provides a two-way classification of price movements. Here price move-
ments are classified into “up,” “unchanged,” and “down.” We denote them by “+,”
“0,” and “−,” respectively. The table shows the price movements between two con-
secutive trades (i.e., from the [i − 1]th to the i th transaction) in the sample. From the
table, trade-by-trade data show that

1. consecutive price increases or decreases are relatively rare, which are about
441/59837 = 0.74% and 410/59837 = 0.69%, respectively;

2. there is a slight edge to move from “up” to “unchanged” than to “down”; see
row 1 of the table;

3. there is a high tendency for price to remain “unchanged”;
4. the probabilities of moving from “down” to “up” or “unchanged” are about the

same. See row 3.

The first observation mentioned before is a clear demonstration of bid-ask bounce,
showing price reversals in intraday transactions data. To confirm this phenomenon,
we consider a directional series Di for price movements, where Di assumes the value
+1, 0, −1 for “up,” “unchanged,” and “down” price movement, respectively, for the
i th transaction. The ACF of {Di } has a single spike at lag 1 with value −0.389, which
is highly significant for a sample size of 59,837 and confirms the price reversal in
consecutive trades.

As a second illustration, we consider the transactions data of IBM stock in
December 1999 obtained from the TAQ database. The normal trading hours are from
9:30 am to 4:00 pm Eastern time, except for December 31 when the market closed
at 13:00 pm. Comparing with the 1990–1991 data, two important changes have
occurred. First, the number of intraday tradings has increased sixfold. There were
134,120 intraday tradings in December 1999 alone. The increased trading intensity
also increased the chance of multiple transactions within a second. The percentage
of trades with zero time duration doubled to 22.98%. At the extreme, there were
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Figure 5.3. IBM transactions data for December 1999. The plot shows the number of trans-
actions in each trading day with the after-hours portion denoting the number of trades with
time stamp after 4:00 pm.

42 transactions within a given second that happened twice on December 3, 1999.
Second, the tick size of price movement was $1/16 = $0.0625 instead of $1/8.
The change in tick size should reduce the bid-ask spread. Figure 5.3 shows the daily
number of transactions in the new sample. Figure 5.4(a) shows the time plot of time
durations between trades, measured in seconds, and Figure 5.4(b) is the time plot of
price changes in consecutive intraday trades, measured in multiples of the tick size
of $1/16. As expected, Figures 5.3 and 5.4(a) show clearly the inverse relationship
between the daily number of transactions and the time interval between trades. Fig-
ure 5.4(b) shows two unusual price movements for IBM stock on December 3, 1999.
They were a drop of 63 ticks followed by an immediate jump of 64 ticks and a drop
of 68 ticks followed immediately by a jump of 68 ticks. Unusual price movements
like these occurred infrequently in intraday transactions.

Focusing on trades recorded within the regular trading hours, we have 61,149
trades out of 133,475 with no price change. This is about 45.8% and substantially
lower than that between November 1990 and January 1991. It seems that reducing
the tick size increased the chance of a price change. Table 5.3 gives the percentages
of trades associated with a price change. The price movements remain approximately
symmetric with respect to zero. Large price movements in intraday tradings are still
relatively rare.

Remark: The record keeping of high-frequency data is often not as good as that
of observations taken at lower frequencies. Data cleaning becomes a necessity in



186 HIGH-FREQUENCY DATA

sequence

du
ra

tio
n

0 20000 40000 60000 80000 100000 120000

0
20

40
60

80
(a) Intraday duration

sequence

ch
an

ge

0 20000 40000 60000 80000 100000 120000

-6
0

-2
0

0
20

40
60

Figure 5.4. IBM transactions data for December 1999. Part (a) is the time plot of time dura-
tions between trades and part (b) is the time plot of price changes in consecutive trades mea-
sured in multiples of the tick size of $1/16. Only data in the normal trading hours are included.

high-frequency data analysis. For transactions data, missing observations may hap-
pen in many ways, and the accuracy of the exact transaction time might be question-
able for some trades. For example, recorded trading times may be beyond 4:00 pm
Eastern time even before the opening of after-hours tradings. How to handle these
observations deserves a careful study. A proper method of data cleaning requires a

Table 5.3. Percentages of Intraday Transactions Associated with a Price Change for IBM
Stock Traded in December 1999. The Percentage of Transactions without Price Change
Is 45.8% and the Total Number of Transactions Recorded within the Regular Trading
Hours Is 133,475. The Size Is Measured in Multiples of Tick Size $1/16.

(a) Upward movements

size 1 2 3 4 5 6 7 > 7
percentage 18.03 5.80 1.79 0.66 0.25 0.15 0.09 0.32

(b) Downward movements

percentage 18.24 5.57 1.79 0.71 0.24 0.17 0.10 0.31
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deep understanding of the way by which the market operates. As such, it is important
to specify clearly and precisely the methods used in data cleaning. These methods
must be taken into consideration in making inference.

Again, let ti be the calendar time, measured in seconds from the midnight, when
the i th transaction took place. Let Pti be the transaction price. The price change
from the (i − 1)th to the i th trade is yi ≡ �Pti = Pti − Pti−1 and the time duration
is�ti = ti − ti−1. Here it is understood that the subscript i in�ti and yi denotes the
time sequence of transactions, not the calendar time. In what follows, we consider
models for yi and �ti both individually and jointly.

5.4 MODELS FOR PRICE CHANGES

The discreteness and concentration on “no change” make it difficult to model the
intraday price changes. Campbell, Lo, and MacKinlay (1997) discuss several econo-
metric models that have been proposed in the literature. Here we mention two mod-
els that have the advantage of employing explanatory variables to study the intraday
price movements. The first model is the ordered probit model used by Hauseman,
Lo, and MacKinlay (1992) to study the price movements in transactions data. The
second model has been considered recently by McCulloch and Tsay (2000) and is a
simplified version of the model proposed by Rydberg and Shephard (1998); see also
Ghysels (2000).

5.4.1 Ordered Probit Model

Let y∗
i be the unobservable price change of the asset under study (i.e., y∗

i = P∗
ti −

P∗
ti−1

), where P∗
t is the virtual price of the asset at time t . The ordered probit model

assumes that y∗
i is a continuous random variable and follows the model

y∗
i = xiβ+ εi , (5.15)

where xi is a p-dimensional row vector of explanatory variables available at time
ti−1, β is a k × 1 parameter vector, E(εi | xi ) = 0, Var(εi | xi ) = σ 2

i , and
Cov(εi , ε j ) = 0 for i 
= j . The conditional variance σ 2

i is assumed to be a posi-
tive function of the explanatory variable wi —that is,

σ 2
i = g(wi ), (5.16)

where g(.) is a positive function. For financial transactions data, wi may contain the
time interval ti − ti−1 and some conditional heteroscedastic variables. Typically, one
also assumes that the conditional distribution of εi given xi and wi is Gaussian.

Suppose that the observed price change yi may assume k possible values. In the-
ory, k can be infinity, but countable. In practice, k is finite and may involve combin-
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ing several categories into a single value. For example, we have k = 7 in Table 5.1,
where the first value “−3 ticks” means that the price change is −3 ticks or lower. We
denote the k possible values as {s1, . . . , sk}. The ordered probit model postulates the
relationship between yi and y∗

i as

yi = s j if α j−1 < y∗
i ≤ α j , j = 1, . . . , k, (5.17)

where α j s are real numbers satisfying −∞ = α0 < α1 < · · · < αk−1 < αk = ∞.
Under the assumption of conditional Gaussian distribution, we have

P(yi = s j | xi ,wi ) = P(α j−1 < xiβ+ εi ≤ α j | xi ,wi )

=


P(xiβ+ εi ≤ α1 | xi ,wi ) if j = 1
P(α j−1 < xiβ+ εi ≤ α j | xi ,wi ) if j = 2, . . . , k − 1
P(αk−1 < xiβ+ εi | xi ,wi ) if j = k

=


�
[
α1−xiβ
σi (wi )

]
if j = 1

�
[
α j −xiβ
σi (wi )

]
−�

[
α j−1−xiβ
σi (wi )

]
if j = 2, . . . , k − 1

1 −�
[
αk−1−xiβ
σi (wi )

]
if j = k,

(5.18)

where �(x) is the cumulative distribution function of the standard normal random
variable evaluated at x , and we write σi (wi ) to denote that σ 2

i is a positive function
of wi . From the definition, an ordered probit model is driven by an unobservable
continuous random variable. The observed values, which have a natural ordering,
can be regarded as categories representing the underlying process.

The ordered probit model contains parameters β, αi (i = 1, . . . , k − 1), and those
in the conditional variance function σi (wi ) in Eq. (5.16). These parameters can be
estimated by the maximum likelihood or Markov Chain Monte Carlo methods.

Example 5.1. Hauseman, Lo, and MacKinlay (1992) apply the ordered pro-
bit model to the 1988 transactions data of more than 100 stocks. Here we only report
their result for IBM. There are 206,794 trades. The sample mean (standard devia-
tion) of price change yi , time duration �ti , and bid-ask spread are −0.0010(0.753),
27.21(34.13), and 1.9470(1.4625), respectively. The bid-ask spread is measured in
ticks. The model used has nine categories for price movement, and the functional
specifications are

xiβ = β1�t∗i +
3∑
v=1

βv+1 yi−v +
3∑
v=1

βv+4SP5i−v +
3∑
v=1

βv+7IBSi−v

+
3∑
v=1

βv+10[Tλ(Vi−v)× IBSi−v] (5.19)
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σ 2
i (wi ) = 1.0 + γ 2

1�t∗i + γ 2
2 ABi−1, (5.20)

where Tλ(V ) = (V λ − 1)/λ is the Box-Cox (1964) transformation of V with λ ∈
[0, 1] and the explanatory variables are defined by the following:

• �t∗i = (ti − ti−1)/100 is a rescaled time duration between the (i − 1)th and i th
trades with time measured in seconds.

• ABi−1 is the bid-ask spread prevailing at time ti−1 in ticks.

• yi−v(v = 1, 2, 3) is the lagged value of price change at ti−v in ticks. With
k = 9, the possible values of price changes are {−4,−3,−2,−1, 0, 1, 2, 3, 4}
in ticks.

• Vi−v(v = 1, 2, 3) is the lagged value of dollar volume at the (i − v)th transac-
tion, defined as the price of the (i −v)th transaction in dollars times the number
of shares traded (denominated in hundreds of shares). That is, the dollar volume
is in hundreds of dollars.

• SP5i−v(v = 1, 2, 3) is the 5-minute continuously compounded returns of the
Standard and Poor’s 500 index futures price for the contract maturing in the
closest month beyond the month in which transaction (i − v) occurred, where
the return is computed with the futures price recorded one minute before the
nearest round minute prior to ti−v and the price recorded 5 minutes before this.

• IBSi−v(v = 1, 2, 3) is an indicator variable defined by

IBSi−v =


1 if Pi−v > (Pa
i−v + Pb

i−v)/2
0 if Pi−v = (Pa

i−v + Pb
i−v)/2

−1 if Pi−v < (Pa
i−v + Pb

i−v)/2,

where Pa
j and Pb

j are the ask and bid price at time t j .

The parameter estimates and their t ratios are given in Table 5.4. All the t ratios
are large except one, indicating that the estimates are highly significant. Such high t
ratios are not surprising as the sample size is large. For the heavily traded IBM stock,
the estimation results suggest the following conclusions:

1. The boundary partitions are not equally spaced, but are almost symmetric with
respect to zero.

2. The transaction duration�ti affects both the conditional mean and conditional
variance of yi in Eqs. (5.19) and (5.20).

3. The coefficients of lagged price changes are negative and highly significant,
indicating price reversals.

4. As expected, the bid-ask spread at time ti−1 significantly affects the condi-
tional variance.
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Table 5.4. Parameter Estimates of the Ordered-Probit Model in Eq. (5.19) and Eq. (5.20)
for the 1988 Transaction Data of IBM, Where t Denotes the t Ratio.

(a) Boundary partitions of the probit model

Par. α1 α2 α3 α4 α5 α6 α7 α8

Est. −4.67 −4.16 −3.11 −1.34 1.33 3.13 4.21 4.73
t −145.7 −157.8 −171.6 −155.5 154.9 167.8 152.2 138.9

(b) Equation parameters of the probit model

Par. γ1 γ2 β1: �t∗
i β2: y−1 β3 β4 β5 β6

Est. 0.40 0.52 −0.12 −1.01 −0.53 −0.21 1.12 −0.26
t 15.6 71.1 −11.4 −135.6 −85.0 −47.2 54.2 −12.1

Par. β7 β8 β9: β10 β11 β12 β13

Est. 0.01 −1.14 −0.37 −0.17 0.12 0.05 0.02
t 0.26 −63.6 −21.6 −10.3 47.4 18.6 7.7

5.4.2 A Decomposition Model

An alternative approach to modeling price change is to decompose it into three com-
ponents and use conditional specifications for the components; see Rydberg and
Shephard (1998). The three components are an indicator for price change, the direc-
tion of price movement if there is a change, and the size of price change if a change
occurs. Specifically, the price change at the i th transaction can be written as

yi ≡ Pti − Pti−1 = Ai Di Si , (5.21)

where Ai is a binary variable defined as

Ai =
{

1 if there is a price change at the i th trade
0 if price remains the same at the i th trade.

(5.22)

Di is also a discrete variable signifying the direction of the price change if a change
occurs—that is,

Di | (Ai = 1) =
{

1 if price increases at the i th trade
−1 if price drops at the i th trade,

(5.23)

where Di | (Ai = 1) means that Di is defined under the condition of Ai = 1, and Si

is size of the price change in ticks if there is a change at the i th trade and Si = 0 if
there is no price change at the i th trade. When there is a price change, Si is a positive
integer-valued random variable.

Note that Di is not needed when Ai = 0, and there is a natural ordering in the
decomposition. Di is well defined only when Ai = 1 and Si is meaningful when
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Ai = 1 and Di is given. Model specification under the decomposition makes use of
the ordering.

Let Fi be the information set available at the i th transaction. Examples of elements
in Fi are�ti− j , Ai− j , Di− j , and Si− j for j ≥ 0. The evolution of price change under
model (5.21) can then be partitioned as

P(yi | Fi−1) = P(Ai Di Si | Fi−1)

= P(Si | Di , Ai , Fi−1)P(Di | Ai , Fi−1)P(Ai | Fi−1). (5.24)

Since Ai is a binary variable, it suffices to consider the evolution of the probability
pi = P(Ai = 1) over time. We assume that

ln

(
pi

1 − pi

)
= xiβ or pi = exiβ

1 + exiβ
, (5.25)

where xi is a finite-dimensional vector consisting of elements of Fi−1 and β is a
parameter vector. Conditioned on Ai = 1, Di is also a binary variable, and we use
the following model for δi = P(Di = 1 | Ai = 1),

ln

(
δi

1 − δi

)
= ziγ or δi = eziγ

1 + eziγ
, (5.26)

where zi is a finite-dimensional vector consisting of elements of Fi−1 and γ is
a parameter vector. To allow for asymmetry between positive and negative price
changes, we assume that

Si | (Di , Ai = 1) ∼ 1 +
{

g(λu,i ) if Di = 1, Ai = 1
g(λd,i ) if Di = −1, Ai = 1,

(5.27)

where g(λ) is a geometric distribution with parameter λ and the parameters λ j,i

evolve over time as

ln

(
λ j,i

1 − λ j,i

)
= wiθ j or λ j,i = ewiθ j

1 + ewiθ j
, j = u, d, (5.28)

where wi is again a finite-dimensional explanatory variables in Fi−1 and θ j is a
parameter vector.

In Eq. (5.27), the probability mass function of a random variable x , which follows
the geometric distribution g(λ), is

p(x = m) = λ(1 − λ)m, m = 0, 1, 2, . . . .

We added 1 to the geometric distribution so that the price change, if it occurs, is at
least 1 tick. In Eq. (5.28), we take the logistic transformation to ensure that λ j,i ∈
[0, 1].
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The previous specification classifies the i th trade, or transaction, into one of three
categories:

1. no price change: Ai = 0 and the associated probability is (1 − pi );

2. a price increase: Ai = 1, Di = 1, and the associated probability is piδi . The
size of the price increase is governed by 1 + g(λu,i ).

3. a price drop: Ai = 1, Di = −1, and the associated probability is pi (1 − δi ).
The size of the price drop is governed by 1 + g(λd,i ).

Let Ii ( j) for j = 1, 2, 3 be the indicator variables of the prior three categories. That
is, Ii ( j) = 1 if the j th category occurs and Ii ( j) = 0 otherwise. The log likelihood
function of Eq. (5.24) becomes

ln[P(yi | Fi−1)] = Ii (1) ln[(1 − pi )] + Ii (2)[ln(pi )+ ln(δi )

+ ln(λu,i )+ (Si − 1) ln(1 − λu,i )]
+ Ii (3)[ln(pi )+ ln(1 − δi )+ ln(λd,i )+ (Si − 1) ln(1 − λd,i )],

and the overall log likelihood function is

ln[P(y1, . . . , yn | F0)] =
n∑

i=1

ln P(yi | Fi−1)], (5.29)

which is a function of parameters β, γ, θu , and θd .

Example 5.2. We illustrate the decomposition model by analyzing the intra-
day transactions of IBM stock from November 1, 1990 to January 31, 1991. There
were 63 trading days and 59,838 intraday transactions in the normal trading hours.
The explanatory variables used are

1. Ai−1: The action indicator of the previous trade (i.e., the [i − 1]th trade within
a trading day).

2. Di−1: The direction indicator of the previous trade.

3. Si−1: The size of the previous trade.

4. Vi−1: The volume of the previous trade, divided by 1000.

5. �ti−1: Time duration from the (i − 2)th to (i − 1)th trade.

6. B Ai : The bid-ask spread prevailing at the time of transaction.

Because we use lag-1 explanatory variables, the actual sample size is 59,775. It turns
out that Vi−1, �ti−1 and B Ai are not statistically significant for the model enter-
tained. Thus, only the first three explanatory variables are used. The model employed
is
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ln

(
pi

1 − pi

)
= β0 + β1 Ai−1

ln

(
δi

1 − δi

)
= γ0 + γ1 Di−1 (5.30)

ln

(
λu,i

1 − λu,i

)
= θu,0 + θu,1Si−1

ln

(
λd,i

1 − λd,i

)
= θd,0 + θd,1Si−1.

The parameter estimates, using the log-likelihood function in Eq. (5.29), are given
in Table 5.5. The estimated simple model shows some dynamic dependence in the
price change. In particular, the trade-by-trade price changes of IBM stock exhibit
some appealing features:

1. The probability of a price change depends on the previous price change.
Specifically, we have

P(Ai = 1 | Ai−1 = 0) = 0.258, P(Ai = 1 | Ai−1 = 1) = 0.476.

The result indicates that a price change may occur in clusters and, as expected,
most transactions are without price change. When no price change occurred
at the (i − 1)th trade, then only about one out of four trades in the subse-
quent transaction has a price change. When there is a price change at the
(i −1)th transaction, the probability of a price change in the i th trade increases
to about 0.5.

2. The direction of price change is governed by

P(Di = 1 | Fi−1, Ai ) =


0.483 if Di−1 = 0 (i.e., Ai−1 = 0)
0.085 if Di−1 = 1, Ai = 1
0.904 if Di−1 = −1, Ai = 1.

This result says that (a) if no price change occurred at the (i − 1)th trade, then
the chances for a price increase or decrease at the i th trade are about even; and
(b) the probabilities of consecutive price increases or decreases are very low.
The probability of a price increase at the i th trade given that a price change

Table 5.5. Parameter Estimates of the ADS Model in Eq. (5.30) for IBM Intraday Trans-
actions: 11/01/90 to 1/31/91.

Parameter β0 β1 γ0 γ1 θu,0 θu,1 θd,0 θd,1

Estimate −1.057 0.962 −0.067 −2.307 2.235 −0.670 2.085 −0.509
Std.Err. 0.104 0.044 0.023 0.056 0.029 0.050 0.187 0.139
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occurs at the i th trade and there was a price increase at the (i − 1)th trade is
only 8.6%. However, the probability of a price increase is about 90% given
that a price change occurs at the i th trade and there was a price decrease at the
(i − 1)th trade. Consequently, this result shows the effect of bid-ask bounce
and supports price reversals in high-frequency trading.

3. There is weak evidence suggesting that big price changes have a higher prob-
ability to be followed by another big price change. Consider the size of a price
increase. We have

Si | (Di = 1) ∼ 1 + g(λu,i ), λu,i = 2.235 − 0.670Si−1.

Using the probability mass function of a geometric distribution, we obtain that
the probability of a price increase by one tick is 0.827 at the i th trade if the
transaction results in a price increase and Si−1 = 1. The probability reduces to
0.709 if Si−1 = 2 and to 0.556 if Si−1 = 3. Consequently, the probability of
a large Si is proportional to Si−1 given that there is a price increase at the i th
trade.

A difference between the ADS and ordered probit models is that the ADS model
does not require any truncation or grouping in the size of a price change.

5.5 DURATION MODELS

Duration models are concerned with time intervals between trades. Longer dura-
tions indicate lack of trading activities, which in turn signify a period of no new
information. The dynamic behavior of durations, thus, contains useful information
about intraday market activities. Using concepts similar to the ARCH models for
volatility, Engle and Russell (1998) propose an autoregressive conditional duration
(ACD) model to describe the evolution of time durations for (heavily traded) stocks.
Zhang, Russell, and Tsay (2001) extend the ACD model to account for nonlinearity
and structural breaks in the data. In this section, we introduce some simple duration
models. As mentioned before, intraday transactions exhibit some diurnal pattern.
Therefore, we focus on the adjusted time duration

�t∗i = �ti/ f (ti ), (5.31)

where f (ti ) is a deterministic function consisting of the cyclical component of �ti .
Obviously, f (ti ) depends on the underlying asset and the systematic behavior of the
market. In practice, there are many ways to estimate f (ti ), but no single method
dominates the others in terms of statistical properties. A common approach is to use
smoothing spline. Here we use simple quadratic functions and indicator variables to
take care of the deterministic component of daily trading activities.
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For the IBM data employed in the illustration of ADS models, we assume

f (ti ) = exp[d(ti )], d(ti ) = β0 +
7∑

j=1

β j f j (ti ), (5.32)

where

f1(ti ) = −
(

ti − 43200

14400

)2

, f3(ti ) =
−

(
ti − 38700

7500

)2

if ti < 43200

0 otherwise,

f2(ti ) = −
(

ti − 48300

9300

)2

, f4(ti ) =

−
(

ti − 48600

9000

)2

if ti ≥ 43200

0 otherwise,

f5(ti ) and f6(ti ) are indicator variables for the first and second 5 minutes of market
opening [i.e., f5(.) = 1 if and only if ti is between 9:30 am and 9:35 am Eastern
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Figure 5.5. Quadratic functions used to remove the deterministic component of IBM intraday
trading durations: (a)–(d) are the functions f1(.) to f4(.) of Eq. (5.32), respectively.
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Time], and f7(ti ) is the indicator for the last 30 minutes of daily trading [i.e., f7(ti ) =
1 if and only if the trade occurred between 3:30 pm and 4:00 pm Eastern Time].
Figure 5.5 shows the plot of fi (.) for i = 1, . . . , 4, where the time scales in the
x-axis is in minutes. Note that f3(43,200) = f4(43,200), where 43,200 corresponds
to 12:00 noon.

The coefficients β j of Eq. (5.32) are obtained by the least squares method of the
linear regression

ln(�ti ) = β0 +
7∑

j=1

β j f j (ti )+ εi .

The fitted model is

ln(�̂ti ) = 2.555 + 0.159 f1(ti )+ 0.270 f2(ti )+ 0.384 f3(ti )

+ 0.061 f4(ti )− 0.611 f5(ti )− 0.157 f6(ti )+ 0.073 f7(ti ).

Figure 5.6 shows the time plot of average durations in 5-minute time intervals over
the 63 trading days before and after adjusting for the deterministic component. Part
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Figure 5.6. IBM transactions data from 11/01/90 to 1/31/91: (a) The average durations in 5-
minute time intervals, and (b) the average durations in 5-minute time intervals after adjusting
for the deterministic component.
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(a) is the average durations of �ti and, as expected, it exhibits a diurnal pattern. Part
(b) is the average durations of�t∗i (i.e., after the adjustment), and the diurnal pattern
is largely removed.

5.5.1 The ACD Model

The autoregressive conditional duration (ACD) model uses the idea of GARCH mod-
els to study the dynamic structure of the adjusted duration�t∗i of Eq. (5.31). For ease
in notation, we define xi = �t∗i .

Let ψi = E(xi | Fi−1) be the conditional expectation of the adjusted duration
between the (i − 1)th and i th trades, where Fi−1 is the information set available at
the (i − 1)th trade. In other words, ψi is the expected adjusted duration given Fi−1.
The basic ACD model is defined as

xi = ψiεi , (5.33)

where {εi } is a sequence of independent and identically distributed non-negative ran-
dom variables such that E(εi ) = 1. In Engle and Russell (1998), εi follows a standard
exponential or a standardized Weibull distribution, and ψi assumes the form

ψi = ω +
r∑

j=1

γ j xi− j +
s∑

j=1

ω jψi− j . (5.34)

Such a model is referred to as an ACD(r, s) model. When the distribution of εi is
exponential, the resulting model is called an EACD(r, s) model. Similarly, if εi fol-
lows a Weibull distribution, the model is a WACD(r, s) model. If necessary, readers
are referred to Appendix A for a quick review of exponential and Weibull distribu-
tions.

Similar to GARCH models, the process ηi = xi − ψi is a Martingale difference
sequence [i.e., E(ηi | Fi−1) = 0], and the ACD(r, s) model can be written as

xi = ω +
max(r,s)∑

j=1

(γ j + ω j )xi− j −
s∑

j=1

ω jηi− j + η j , (5.35)

which is in the form of an ARMA process with non-Gaussian innovations. It is under-
stood here that γ j = 0 for j > r and ω j = 0 for j > s. Such a representation can
be used to obtain the basic conditions for weak stationarity of the ACD model. For
instance, taking expectation on both sides of Eq. (5.35) and assuming weak station-
arity, we have

E(xi ) = ω

1 −∑max(r,s)
j=1 (γ j + ω j )

.
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Therefore, we assume ω > 0 and 1 >
∑

j (γ j +ω j ) because the expected duration is
positive. As another application of Eq. (5.35), we study properties of the EACD(1, 1)
model.

EACD(1, 1) Model
An EACD(1, 1) model can be written as

xi = ψiεi , ψi = ω + γ1xi−1 + ω1ψi−1, (5.36)

where εi follows the standard exponential distribution. Using the moments of a stan-
dard exponential distribution in Appendix A, we have E(εi ) = 1, Var(εi ) = 1, and
E(ε2

i ) = Var(xi ) + [E(xi )]2 = 2. Assuming that xi is weakly stationary (i.e., the
first two moments of xi are time-invariant), we derive the variance of xi . First, taking
expectation of Eq. (5.36), we have

E(xi ) = E[E(ψiεi | Fi−1)] = E(ψi ), E(ψi ) = ω + γ1 E(xi−1)+ ω1 E(ψi−1).

(5.37)

Under weak stationarity, E(ψi ) = E(ψi−1) so that Eq. (5.37) gives

µx ≡ E(xi ) = E(ψi ) = ω

1 − γ1 − ω1
. (5.38)

Next, because E(ε2
i ) = 2, we have E(x2

i ) = E[E(ψ2
i ε

2
i | Fi−1)] = 2E(ψ2

i ).
Taking square of ψi in Eq. (5.36) and expectation and using weak stationarity of

ψi and xi , we have, after some algebra, that

E(ψ2
i ) = µ2

x × 1 − (γ1 + ω1)
2

1 − 2γ 2
1 − ω2

1 − 2γ1ω1
. (5.39)

Finally, using Var(xi ) = E(x2
i )− [E(xi )]2 and E(x2

i ) = 2E(ψ2
i ), we have

Var(xi ) = 2E(ψ2
i )− µ2

x = µ2
x × 1 − ω2

1 − 2γ1ω1

1 − ω2
1 − 2γ1ω1 − 2γ 2

1

,

where µx is defined in Eq. (5.38). This result shows that, to have time-invariant
unconditional variance, the EACD(1, 1) model in Eq. (5.36) must satisfy 1 > 2γ 2

1 +
ω2

1 + 2γ1ω1. The variance of an WACD(1, 1) model can be obtained by using the
same techniques and the first two moments of a standardized Weibull distribution.

ACD Models with a Generalized Gamma Distribution
In the statistical literature, intensity function is often expressed in terms of hazard
function. As shown in Appendix B, the hazard function of an EACD model is con-
stant over time and that of an WACD model is a monotonous function. These hazard
functions are rather restrictive in application as the intensity function of stock trans-
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actions might not be constant or monotone over time. To increase the flexibility of the
associated hazard function, Zhang, Russell, and Tsay (2001) employ a (standardized)
generalized Gamma distribution for εi . See Appendix A for some basic properties of
a generalized Gamma distribution. The resulting hazard function may assume vari-
ous patterns, including U shape or inverted U shape. We refer to an ACD model with
innovations that follow a generalized Gamma distribution as a GACD(r, s) model.

5.5.2 Simulation

To illustrate ACD processes, we generated 500 observations from the ACD(1, 1)
model

xi = ψiεi , ψi = 0.3 + 0.2xi−1 + 0.7ψi−1 (5.40)

using two different innovational distributions for εi . In case 1, εi is assumed to follow
a standardized Weibull distribution with parameter α = 1.5. In case 2, εi follows a
(standardized) generalized Gamma distribution with parameters κ = 1.5 and α =
0.5.

Figure 5.7(a) shows the time plot of the WACD(1, 1) series, whereas Figure 5.8(a)
is the GACD(1, 1) series. Figure 5.9 plots the histograms of both simulated series.
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Figure 5.7. A simulated WACD(1, 1) series in Eq. (5.40): (a) the original series, and (b) the
standardized series after estimation. There are 500 observations.
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Figure 5.8. A simulated GACD(1, 1) series in Eq. (5.40): (a) the original series, and (b) the
standardized series after estimation. There are 500 observations.
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Figure 5.10. The sample autocorrelation function of a simulated WACD(1, 1) series with 500
observations: (a) the original series, and (b) the standardized residual series.

The difference between the two models is evident. Finally, the sample ACF of the
two simulated series are shown in Figure 5.10(a) and Figure 5.11(b), respectively.
The serial dependence of the data is clearly seen.

5.5.3 Estimation

For an ACD(r, s) model, let io = max(r, s) and xt = (x1, . . . , xt )
′. The likelihood

function of the durations x1, . . . , xT is

f (xT | θ) =
[

T∏
i=io+1

f (xi | Fi−1,θ)

]
× f (xio | θ),

where θ denotes the vector of model parameters, and T is the sample size. The
marginal probability density function f (xio | θ) of the previous equation is rather
complicated for a general ACD model. Because its impact on the likelihood function
is diminishing as the sample size T increases, this marginal density is often ignored,
resulting in the use of conditional likelihood method. For a WACD model, we use
the probability density function (pdf) of Eq. (5.55) and obtain the conditional log
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Figure 5.11. The sample autocorrelation function of a simulated GACD(1, 1) series with 500
observations: (a) the original series, and (b) the standardized residual series.

likelihood function

�(x | θ, xio) =
T∑

i=i0+1

α ln

[
�

(
1 + 1

α

)]
+ ln

(
α

xi

)

+ α ln

(
xi

ψi

)
−
�

(
1 + 1

α

)
xi

ψi

α , (5.41)

whereψi = ω+∑r
j=1 γ j xi− j +∑s

j=1 ω jψi− j , θ = (ω, γ1, . . . , γr , ω1, . . . , ωs, α)
′

and x = (xio+1, . . . , xT )
′. When α = 1, the (conditional) log likelihood function

reduces to that of an EACD(r, s) model.
For a GACD(r, s) model, the conditional log likelihood function is

�(x | θ, xio) =
T∑

i=io+1

ln

(
α

�(κ)

)
+(κα−1) ln(xi )−κα ln(λψi )−

(
xi

λψi

)α
, (5.42)

where λ = �(κ)/�(κ + 1
α
) and the parameter vector θ now also includes κ . As

expected, when κ = 1, λ = 1/�(1+ 1
α
) and the log likelihood function in Eq. (5.42)
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reduces to that of a WACD(r, s) model in Eq. (5.41). This log likelihood function
can be rewritten in many ways to simplify the estimation.

Under some regularity conditions, the conditional maximum likelihood estimates
are asymptotically normal; see Engle and Russell (1998) and the references therein.
In practice, simulation can be used to obtain finite-sample reference distributions for
the problem of interest once a duration model is specified.

Example 5.3. (Simulated ACD(1,1) series continued) Consider the simulated
WACD(1,1) and GACD(1, 1) series of Eq. (5.40). We apply the conditional likeli-
hood method and obtain the results in Table 5.6. The estimates appear to be reason-
able. Let ψ̂i be the 1-step ahead prediction of ψi and ε̂i = xi/ψ̂i be the standardized
series, which can be regarded as standardized residuals of the series. If the model
is adequately specified, {ε̂i } should behave as a sequence of independent and iden-
tically distributed random variables. Figure 5.7(b) and Figure 5.8(b) show the time
plot of ε̂i for both models. The sample ACF of ε̂i for both fitted models are shown in
Figure 5.10(b) and Figure 5.11(b), respectively. It is evident that no significant serial
correlations are found in the ε̂i series.

Example 5.4. As an illustration of duration models, we consider the trans-
action durations of IBM stock on five consecutive trading days from November 1 to
November 7, 1990. Focusing on positive transaction durations, we have 3534 obser-
vations. In addition, the data have been adjusted by removing the deterministic com-
ponent in Eq. (5.32). That is, we employ 3534 positive adjusted durations as defined
in Eq. (5.31).

Figure 5.12(a) shows the time plot of the adjusted (positive) durations for the first
five trading days of November 1990, and Figure 5.13(a) gives the sample ACF of
the series. There exist some serial correlations in the adjusted durations. We fit a
WACD(1, 1) model to the data and obtain the model

xi = ψiεi , ψi = 0.169 + 0.064xi−1 + 0.885ψi−1, (5.43)

Table 5.6. Estimation Results for Simulated ACD(1,1) Series with 500 Observations:
(a) for WACD(1,1) Series and (b) for GACD(1,1) Series.

(a) WACD(1,1) model

Parameter ω γ1 ω1 α

True 0.3 0.2 0.7 1.5
Estimate 0.364 0.100 0.767 1.477
Std Error (0.139) (0.025) (0.060) (0.052)

(b) GACD(1,1) model

Parameter ω γ1 ω1 α κ

True 0.3 0.2 0.7 0.5 1.5
Estimate 0.401 0.343 0.561 0.436 2.077
Std Error (0.117) (0.074) (0.065) (0.078) (0.653)
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Figure 5.12. Time plots of durations for IBM stock traded in the first five trading days of
November 1990: (a) the adjusted series, and (b) the normalized innovations of an WACD(1, 1)
model. There are 3534 nonzero durations.

where {εi } is a sequence of independent and identically distributed random variates
that follow the standardized Weibull distribution with parameter α̂ = 0.879(0.012),
where 0.012 is the estimated standard error. Standard errors of the estimates in
Eq. (5.43) are 0.039, 0.010, and 0.018, respectively. All t ratios of the estimates
are greater than 4.2, indicating that the estimates are significant at the 1% level.
Figure 5.12(b) shows the time plot of ε̂i = xi/ψ̂i , and Figure 5.13(b) provides the
sample ACF of ε̂i . The Ljung–Box statistics show Q(10) = 4.96 and Q(20) = 10.75
for the ε̂i series. Clearly, the standardized innovations have no significant serial cor-
relations. In fact, the sample autocorrelations of the squared series {ε̂2

i } are also small
with Q(10) = 6.20 and Q(20) = 11.16, further confirming lack of serial dependence
in the normalized innovations. In addition, the mean and standard deviation of a stan-
dardized Weibull distribution with α = 0.879 are 1.00 and 1.14, respectively. These
numbers are close to the sample mean and standard deviation of {ε̂i }, which are 1.01
and 1.22, respectively. The fitted model seems adequate.

In model (5.43), the estimated coefficients show γ̂1 + ω̂1 ≈ 0.949, indicating
certain persistence in the adjusted durations. The expected adjusted duration is
0.169/(1 − 0.064 − 0.885) = 3.31 seconds, which is close to the sample mean 3.29
of the adjusted durations. The estimated α of the standardized Weibull distribution
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Figure 5.13. The sample autocorrelation function of adjusted durations for IBM stock traded
in the first five trading days of November 1990: (a) the adjusted series, and (b) the normalized
innovations for a WACD(1, 1) model.

is 0.879, which is less than but close to 1. Thus, the conditional hazard function is
monotonously decreasing at a slow rate.

If a generalized Gamma distribution function is used for the innovations, then the
fitted GACD(1, 1) model is

xi = ψiεi , ψi = 0.141 + 0.063xi−1 + 0.897ψi−1, (5.44)

where {εi } follows a standardized, generalized Gamma distribution in Eq. (5.56)
with parameters κ = 4.248(1.046) and α = 0.395(0.053), where the number in
parentheses denotes estimated standard error. Standard errors of the three parame-
ters in Eq. (5.44) are 0.041, 0.010, and 0.019, respectively. All of the estimates are
statistically significant at the 1% level. Again, the normalized innovational process
{ε̂i } and its squared series have no significant serial correlation, where ε̂i = xi/ψ̂i

based on model (5.44). Specifically, for the ε̂i process, we have Q(10) = 4.95 and
Q(20) = 10.28. For the ε̂2

i series, we have Q(10) = 6.36 and Q(20) = 10.89.
The expected duration of model (5.44) is 3.52, which is slightly greater than that

of the WACD(1, 1)model in Eq. (5.43). Similarly, the persistence parameter γ̂1 + ω̂1
of model (5.44) is also slightly higher at 0.96.
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Remark: Estimation of EACD models can be carried out by using programs for
ARCH models with some minor modification; see Engle and Russell (1998). In this
book, we use either the RATS program or some Fortran programs developed by the
author to estimate the duration models. Limited experience indicates that it is harder
to estimate a GACD model than an EACD or a WACD model. RATS programs used
to estimate WACD and GACD models are given in Appendix C.

5.6 NONLINEAR DURATION MODELS

Nonlinear features are also commonly found in high-frequency data. As an illus-
tration, we apply some nonlinearity tests discussed in Chapter 4 to the normal-
ized innovations ε̂i of the WACD(1, 1) model for the IBM transaction durations in
Example 5.4; see Eq. (5.43). Based on an AR(4) model, the test results are given in
part (a) of Table 5.7. As expected from the model diagnostics of Example 5.4, the
Ori-F test indicates no quadratic nonlinearity in the normalized innovations. How-
ever, the TAR-F test statistics suggest strong nonlinearity.

Based on the test results in Table 5.7, we entertain a threshold duration model
with two regimes for the IBM intraday durations. The threshold variable is xt−1 (i.e.,
lag-1 adjusted duration). The estimated threshold value is 3.79. The fitted threshold
WACD(1, 1) model is xi = ψiεi , where

ψi =
{

0.020 + 0.257xi−1 + 0.847ψi−1, εi ∼ w(0.901) if xi−1 ≤ 3.79

1.808 + 0.027xi−1 + 0.501ψi−1, εi ∼ w(0.845) if xi−1 > 3.79,

(5.45)

Table 5.7. Nonlinearity Tests for IBM Transaction Durations from November 1 to
November 7, 1990. Only Intraday Durations Are Used. The Number in the Parenthe-
ses of Tar-F Tests Denotes Time Delay.

(a) Normalized innovations of a WACD(1,1) model

Type Ori-F Tar-F(1) Tar-F(2) Tar-F(3) Tar-F(4)

Test 0.343 3.288 3.142 3.128 0.297
p value 0.969 0.006 0.008 0.008 0.915

(b) Normalized innovations of a threshold WACD(1,1) model

Type Ori-F Tar-F(1) Tar-F(2) Tar-F(3) Tar-F(4)

Test 0.163 0.746 1.899 1.752 0.270
p value 0.998 0.589 0.091 0.119 0.929
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wherew(α) denotes a standardized Weibull distribution with parameter α. The num-
ber of observations in the two regimes are 2503 and 1030, respectively. In Eq. (5.45),
the standard errors of the parameters for the first regime are 0.043, 0.041, 0.024,
and 0.014, whereas those for the second regime are 0.526, 0.020, 0.147, and 0.020,
respectively.

Consider the normalized innovations ε̂i = xi/ψ̂i of the threshold WACD(1, 1)
model in Eq. (5.45). We obtain Q(12) = 9.8 and Q(24) = 23.9 for ε̂i and Q(12) =
8.0 and Q(24) = 16.7 for ε̂2

i . Thus, there are no significant serial correlations in the
ε̂i and ε̂2

i series. Furthermore, applying the same nonlinearity tests as before to this
newly normalized innovational series ε̂i , we detect no nonlinearity; see part (b) of
Table 5.7. Consequently, the two-regime threshold WACD(1, 1) model in Eq. (5.45)
is adequate.

If we classify the two regimes as heavy and thin trading periods, then the threshold
model suggests that the trading dynamics measured by intraday transaction durations
are different between heavy and thin trading periods for IBM stock even after the
adjustment of diurnal pattern. This is not surprising as market activities are often
driven by arrivals of news and other information.

The estimated threshold WACD(1, 1)model in Eq. (5.45) contains some insignif-
icant parameters. We refine the model and obtain the result:

ψi =
{

0.225xi−1 + 0.867ψi−1, εi ∼ w(0.902) if xi−1 ≤ 3.79

1.618 + 0.614ψi−1, εi ∼ w(0.846) if xi−1 > 3.79.

All of the estimates of the refined model are highly significant. The Ljung–Box
statistics of the standardized innovations ε̂i = xi/ψ̂i show Q(10) = 5.91(0.82)
and Q(20) = 16.04(0.71) and those of ε̂2

i give Q(10) = 5.35(0.87) and Q(20) =
15.20(0.76), where the number in parentheses is the p value. Therefore, the refined
model is adequate. The RATS program used to estimate the prior model is given in
Appendix C.

5.7 BIVARIATE MODELS FOR PRICE CHANGE AND DURATION

In this section, we introduce a model that considers jointly the process of price
change and the associated duration. As mentioned before, many intraday transactions
of a stock result in no price change. Those transactions are highly relevant to trading
intensity, but they do not contain direct information on price movement. Therefore,
to simplify the complexity involved in modeling price change, we focus on transac-
tions that result in a price change and consider a price change and duration (PCD)
model to describe the multivariate dynamics of price change and the associated time
duration.

We continue to use the same notation as before, but the definition is changed to
transactions with a price change. Let ti be the calendar time of the i th price change
of an asset. As before, ti is measured in seconds from midnight of a trading day. Let
Pti be the transaction price when the i th price change occurred and�ti = ti −ti−1 be
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the time duration between price changes. In addition, let Ni be the number of trades
in the time interval (ti−1, ti ) that result in no price change. This new variable is used
to represent trading intensity during a period of no price change. Finally, let Di be
the direction of the i th price change with Di = 1 when price goes up and Di = −1
when the price comes down, and let Si be the size of the i th price change measured
in ticks. Under the new definitions, the price of a stock evolves over time by

Pti = Pti−1 + Di Si , (5.46)

and the transactions data consist of {�ti , Ni , Di , Si } for the i th price change. The
PCD model is concerned with the joint analysis of (�ti , Ni , Di , Si ).

Remark: Focusing on transactions associated with a price change can reduce
the sample size dramatically. For example, consider the intraday data of IBM stock
from November 1, 1990 to January 31, 1991. There were 60,265 intraday trades, but
only 19,022 of them resulted in a price change. In addition, there is no diurnal pattern
in time durations between price changes.

To illustrate the relationship among the price movements of all transactions and
those of transactions associated with a price change, we consider the intraday trad-
ings of IBM stock on November 21, 1990. There were 726 transactions on that day
during the normal trading hours, but only 195 trades resulted in a price change. Fig-
ure 5.14 shows the time plot of the price series for both cases. As expected, the price
series are the same.

The PCD model decomposes the joint distribution of (�ti , Ni , Di , Si ) given Fi−1
as

f (�ti , Ni , Di , Si | Fi−1)

= f (Si | Di , Ni ,�ti , Fi−1) f (Di | Ni ,�ti , Fi−1) f (Ni | �ti , Fi−1) f (�ti | Fi−1).

(5.47)

This partition enables us to specify suitable econometric models for the conditional
distributions and, hence, to simplify the modeling task. There are many ways to
specify models for the conditional distributions. A proper specification might depend
on the asset under study. Here we employ the specifications used by McCulloch and
Tsay (2000), who use generalized linear models for the discrete-valued variables and
a time series model for the continuous variable ln(�ti ).

For the time duration between price changes, we use the model

ln(�ti ) = β0 + β1 ln(�ti−1)+ β2Si−1 + σεi , (5.48)

where σ is a positive number and {εi } is a sequence of iid N (0, 1) random variables.
This is a multiple linear regression model with lagged variables. Other explanatory
variables can be added if necessary. The log transformation is used to ensure the
positiveness of time duration.
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(b) Transactions with a price change

Figure 5.14. Time plots of the intraday transaction prices of IBM stock on November 21,
1990: (a) all transactions, and (b) transactions that resulted in a price change.

The conditional model for Ni is further partitioned into two parts because empir-
ical data suggest a concentration of Ni at 0. The first part of the model for Ni is the
logit model

p(Ni = 0 | �ti , Fi−1) = logit[α0 + α1 ln(�ti )], (5.49)

where logit(x) = exp(x)/[1 + exp(x)], whereas the second part of the model is

Ni | (Ni > 0,�ti , Fi−1) ∼ 1 + g(λi ), λi = exp[γ0 + γ1 ln(�ti )]
1 + exp[γ0 + γ1 ln(�ti )] , (5.50)

where ∼ means “is distributed as,” and g(λ) denotes a geometric distribution with
parameter λ, which is in the interval (0, 1).

The model for direction Di is

Di | (Ni ,�ti , Fi−1) = sign(µi + σiε), (5.51)

where ε is a N (0, 1) random variable, and



210 HIGH-FREQUENCY DATA

µi = ω0 + ω1 Di−1 + ω2 ln(�ti )

ln(σi ) = β

∣∣∣∣∣ 4∑
j=1

Di− j

∣∣∣∣∣ = β| Di−1 + Di−2 + Di−3 + Di−4 |.

In other words, Di is governed by the sign of a normal random variable with mean µi

and variance σ 2
i . A special characteristic of the prior model is the function for ln(σi ).

For intraday transactions, a key feature is the price reversal between consecutive
price changes. This feature is modeled by the dependence of Di on Di−1 in the
mean equation with a negative ω1 parameter. However, there exists occasional local
trend in the price movement. The previous variance equation allows for such a local
trend by increasing the uncertainty in the direction of price movement when the past
data showed evidence of a local trend. For a normal distribution with a fixed mean,
increasing its variance makes a random draw have the same chance to be positive
and negative. This in turn increases the chance for a sequence of all positive or all
negative draws. Such a sequence produces a local trend in price movement.

To allow for different dynamics between positive and negative price movements,
we use different models for the size of a price change. Specifically, we have

Si | (Di = −1, Ni ,�ti , Fi−1) ∼ p(λd,i )+ 1, with (5.52)

ln(λd,i ) = ηd,0 + ηd,1 Ni + ηd,2 ln(�ti )+ ηd,3Si−1

Si | (Di = 1, Ni ,�ti , Fi−1) ∼ p(λu,i )+ 1, with (5.53)

ln(λu,i ) = ηu,0 + ηu,1 Ni + ηu,2 ln(�ti )+ ηu,3Si−1,

where p(λ) denotes a Poisson distribution with parameter λ, and 1 is added to the
size because the minimum size is 1 tick when there is a price change.

The specified models in Eqs. (5.48)–(5.53) can be estimated jointly by either the
maximum likelihood method or the Markov Chain Monte Carlo methods. Based
on Eq. (5.47), the models consist of six conditional models that can be estimated
separately.

Example 5.5. Consider the intraday transactions of IBM stock on November
21, 1990. There are 194 price changes within the normal trading hours. Figure 5.15
shows the histograms of ln(�ti ), Ni , Di , and Si . The data for Di are about equally
distributed between “upward” and “downward” movements. Only a few transactions
resulted in a price change of more than 1 tick; as a matter of fact, there were seven
changes with two ticks and one change with three ticks. Using Markov Chain Monte
Carlo (MCMC) methods (see Chapter 10), we obtained the following models for the
data. The reported estimates and their standard deviations are the posterior means
and standard deviations of MCMC draws with 9500 iterations. The model for the
time duration between price changes is

ln(�ti ) = 4.023 + 0.032 ln(�ti−1)− 0.025Si−1 + 1.403εi ,
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Figure 5.15. Histograms of intraday transactions data for IBM stock on November 21, 1990:
(a) log durations between price changes, (b) direction of price movement, (c) size of price
change measured in ticks, and (d) number of trades without a price change.

where standard deviations of the coefficients are 0.415, 0.073, 0.384, and 0.073,
respectively. The fitted model indicates that there was no dynamic dependence in the
time duration. For the Ni variable, we have

Pr(Ni > 0 | �ti , Fi−1) = logit[−0.637 + 1.740 ln(�ti )],
where standard deviations of the estimates are 0.238 and 0.248, respectively. Thus,
as expected, the number of trades with no price change in the time interval (ti−1, ti )
depends positively on the length of the interval. The magnitude of Ni when it is
positive is

Ni | (Ni > 0,�ti , Fi−1) ∼ 1 + g(λi ), λi = exp[0.178 − 0.910 ln(�ti )]
1 + exp[0.178 − 0.910 ln(�ti )] ,

where standard deviations of the estimates are 0.246 and 0.138, respectively. The
negative and significant coefficient of ln(�ti ) means that Ni is positively related to
the length of the duration �ti because a large ln(�ti ) implies a small λi , which
in turn implies higher probabilities for larger Ni ; see the geometric distribution in
Eq. (5.27).
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The fitted model for Di is

µi = 0.049 − 0.840Di−1 − 0.004 ln(�ti )

ln(σi ) = 0.244| Di−1 + Di−2 + Di−3 + Di−4 |,

where standard deviations of the parameters in the mean equation are 0.129, 0.132,
and 0.082, respectively, whereas that for the parameter in the variance equation is
0.182. The price reversal is clearly shown by the highly significant negative coef-
ficient of Di−1. The marginally significant parameter in the variance equation is
exactly as expected. Finally, the fitted models for the size of a price change are

ln(λd,i ) = 1.024 − 0.327Ni + 0.412 ln(�ti )− 4.474Si−1

ln(λu,i ) = −3.683 − 1.542Ni + 0.419 ln(�ti )+ 0.921Si−1,

where standard deviations of the parameters for the “down size” are 3.350, 0.319,
0.599, and 3.188, respectively, whereas those for the “up size” are 1.734, 0.976,
0.453, and 1.459. The interesting estimates of the prior two equations are the negative
estimates of the coefficient of Ni . A large Ni means there were more transactions in
the time interval (ti−1, ti ) with no price change. This can be taken as evidence of no
new information available in the time interval (ti−1, ti ). Consequently, the size for
the price change at ti should be small. A small λu,i or λd,i for a Poisson distribution
gives precisely that.

In summary, granted that a sample of 194 observations in a given day may not
contain sufficient information about the trading dynamic of IBM stock, but the fitted
models appear to provide some sensible results. McCulloch and Tsay (2000) extend
the PCD model to a hierarchical framework to handle all the data of the 63 trad-
ing days between November 1, 1990 and January 31, 1991. Many of the parameter
estimates become significant in this extended sample, which has more than 19,000
observations. For example, the overall estimate of the coefficient of ln(�ti−1) in the
model for time duration ranges from 0.04 to 0.1, which is small, but significant.

Finally, using transactions data to test microstructure theory often requires a care-
ful specification of the variables used. It also requires a deep understanding of the
way by which the market operates and the data are collected. However, ideas of the
econometric models discussed in this chapter are useful and widely applicable in
analysis of high-frequency data.

APPENDIX A. REVIEW OF SOME PROBABILITY DISTRIBUTIONS

Exponential distribution
A random variable X has an exponential distribution with parameter β > 0 if its
probability density function (pdf) is given by
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f (x | β) =


1

β
e−x/β if x ≥ 0

0 otherwise.

Denoting such a distribution by X ∼ exp(β), we have E(X) = β and Var(X ) = β2.
The cumulative distribution function (CDF) of X is

F(x | β) =
{

0 if x < 0
1 − e−x/β if x ≥ 0.

When β = 1, X is said to have a standard exponential distribution.

Gamma function
For κ > 0, the gamma function �(κ) is defined by

�(κ) =
∫ ∞

0
xκ−1e−x dx .

The most important properties of the gamma function are:

1. For any κ > 1, �(κ) = (κ − 1)�(κ − 1).

2. For any positive integer m, �(m) = (m − 1)!.
3. �( 1

2 ) = √
π .

The integration

�(y | κ) =
∫ y

0
xκ−1e−x dx, y > 0

is an incomplete gamma function. Its values have been tabulated in the literature.
Computer programs are now available to evaluate the incomplete gamma function.

Gamma distribution
A random variable X has a Gamma distribution with parameter κ and β (κ > 0,
β > 0) if its pdf is given by

f (x | κ, β) =


1

βκ�(κ)
xκ−1e−x/β if x ≥ 0

0 otherwise.

By changing variable y = x/β, one can easily obtain the moments of X :

E(Xm) =
∫ ∞

0
xm f (x | κ, β)dx = 1

βκ�(κ)

∫ ∞

0
xκ+m−1e−x/βdx
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= βm

�(κ)

∫ ∞

0
yκ+m−1e−ydy = βm�(κ + m)

�(κ)
.

In particular, the mean and variance of X are E(X) = κβ and Var(X ) = κβ2. When
β = 1, the distribution is called a standard Gamma distribution with parameter κ .
We use the notation G ∼ Gamma(κ) to denote that G follows a standard Gamma
distribution with parameter κ . The moments of G are

E(Gm) = �(κ + m)

�(κ)
, m > 0. (5.54)

Weibull distribution
A random variable X has a Weibull distribution with parameters α and β (α > 0,
β > 0) if its pdf is given by

f (x | α, β) =
{
α
βα

xα−1e−(x/β)α if x ≥ 0
0 if x < 0,

where β and α are the scale and shape parameters of the distribution. The mean and
variance of X are

E(X) = β�

(
1 + 1

α

)
, Var(X) = β2

{
�

(
1 + 2

α

)
−
[
�

(
1 + 1

α

)]2
}

and the CDF of X is

F(x | α, β) =
{

0 if x < 0
1 − e−(x/β)α if x ≥ 0.

When α = 1, the Weibull distribution reduces to an exponential distribution.
Define Y = X/[β�(1 + 1

α
)]. We have E(Y ) = 1 and the pdf of Y is

f (y | α) =
α

[
�

(
1 + 1

α

)]α
yα−1 exp

{
−
[
�

(
1 + 1

α

)
y

]α}
if y ≥ 0

0 otherwise,
(5.55)

where the scale parameter β disappears due to standardization. The CDF of the stan-
dardized Weibull distribution is

F(y | α) =


0 if y < 0

1 − exp

{
−
[
�

(
1 + 1

α

)
y

]α}
if y > 0,

and we have E(Y ) = 1 and Var(Y ) = �(1 + 2
α
)/[�(1 + 1

α
)]2 − 1. For a duration

model with Weibull innovations, the prior pdf is used in the maximum likelihood
estimation.
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Generalized Gamma distribution
A random variable X has a generalized Gamma distribution with parameter α, β, κ
(α > 0, β > 0, and κ > 0) if its pdf is given by

f (x | α, β, κ) =


αxκα−1

βκα�(κ)
exp

[
−
(

x

β

)α]
if x ≥ 0

0 otherwise,

where β is a scale parameter, and α and κ are shape parameters. This distribution
can be written as

G =
(

X

β

)α
,

where G is a standard Gamma random variable with parameter κ . The pdf of X can
be obtained from that of G by the technique of changing variables. Similarly, the
moments of X can be obtained from that of G in Eq. (5.54) by

E(Xm) = E[(βG1/α)m] = βm E(Gm/α) = βm �(κ + m
α
)

�(κ)
= βm�(κ + m

α
)

�(κ)
.

When κ = 1, the generalized Gamma distribution reduces to that of a Weibull
distribution. Thus, the exponential and Weibull distributions are special cases of the
generalized Gamma distribution.

The expectation of a generalized Gamma distribution is E(X) = β�(κ +
1
α
)/�(κ). In duration models, we need a distribution with unit expectation. There-

fore, defining a random variable Y = λX/β, where λ = �(κ)/�(κ + 1
α
), we have

E(Y ) = 1 and the pdf of Y is

f (y | α, κ) =


αyκα−1

λκα�(κ)
exp

[
−
( y

λ

)α]
if y > 0

0 otherwise,

(5.56)

where again the scale parameter β disappears and λ = �(κ)/�(κ + 1
α
).

APPENDIX B. HAZARD FUNCTION

A useful concept in modeling duration is the Hazard function implied by a distribu-
tion function. For a random variable X , the survival function is defined as

S(x) ≡ P(X > x) = 1 − P(X ≤ x) = 1 − CDF(x), x > 0,

which gives the probability that a subject, which follows the distribution of X , sur-
vives at the time x . The hazard function (or intensity function) of X is then defined
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by

h(x) = f (x)

S(x)
(5.57)

where f (.) and S(.) are the pdf and survival function of X , respectively.

Example 5.6. For the Weibull distribution with parameters α and β, the sur-
vival function and hazard function are:

S(x | α, β) = exp

[
−
(

x

β

)α]
, h(x | α, β) = α

βα
xα−1, x > 0.

In particular, when α = 1, we have h(x | β) = 1/β. Therefore, for an exponential
distribution, the hazard function is constant. For a Weibull distribution, the hazard is
a monotone function. If α > 1, then the hazard function is monotonously increas-
ing. If α < 1, the hazard function is monotonously decreasing. For the generalized
Gamma distribution, the survival function and hence, the hazard function involve the
incomplete Gamma function. Yet the hazard function may exhibit various patterns,
including U shape or inverted U shape. Thus, the generalized Gamma distribution
provides a flexible approach to modeling the duration of stock transactions.

For the standardized Weibull distribution, the survival and hazard functions are

S(y | α) = exp

{
−
[
�

(
1 + 1

α

)
y

]α}
,

h(y | α) = α

[
�

(
1 + 1

α

)]α
yα−1, y > 0.

APPENDIX C. SOME RATS PROGRAMS FOR DURATION MODELS

The data used are adjusted time durations of intraday transactions of IBM stock from
November 1 to November 9, 1990. The file name is “ibm1to5.dat” and it has 3534
observations.

A. Program for Estimating a WACD(1, 1) Model

all 0 3534:1
open data ibm1to5.dat
data(org=obs) / x r1
set psi = 1.0
nonlin a0 a1 b1 al
frml gvar = a0+a1*x(t-1)+b1*psi(t-1)
frml gma = %LNGAMMA(1.0+1.0/al)
frml gln =al*gma(t)+log(al)-log(x(t)) $
+al*log(x(t)/(psi(t)=gvar(t)))-(exp(gma(t))*x(t)/psi(t))**al
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smpl 2 3534
compute a0 = 0.2, a1 = 0.1, b1 = 0.1, al = 0.8
maximize(method=bhhh,recursive,iterations=150) gln
set fv = gvar(t)
set resid = x(t)/fv(t)
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

B. Program for Estimating a GACD(1, 1) Models

all 0 3534:1
open data ibm1to5.dat
data(org=obs) / x r1
set psi = 1.0
nonlin a0 a1 b1 al ka
frml cv = a0+a1*x(t-1)+b1*psi(t-1)
frml gma = %LNGAMMA(ka)
frml lam = exp(gma(t))/exp(%LNGAMMA(ka+(1.0/al)))
frml xlam = x(t)/(lam(t)*(psi(t)=cv(t)))
frml gln =-gma(t)+log(al/x(t))+ka*al*log(xlam(t))-(xlam(t))**al
smpl 2 3534
compute a0 = 0.238, a1 = 0.075, b1 = 0.857, al = 0.5, ka = 4.0
nlpar(criterion=value,cvcrit=0.00001)
maximize(method=bhhh,recursive,iterations=150) gln
set fv = cv(t)
set resid = x(t)/fv(t)
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

C. A program for estimating a Tar-WACD(1, 1) model. The threshold 3.79 is
prespecified.

all 0 3534:1
open data ibm1to5.dat
data(org=obs) / x rt
set psi = 1.0
nonlin a1 a2 al b0 b2 bl
frml u = ((x(t-1)-3.79)/abs(x(t-1)-3.79)+1.0)/2.0
frml cp1 = a1*x(t-1)+a2*psi(t-1)
frml gma1 = %LNGAMMA(1.0+1.0/al)
frml cp2 = b0+b2*psi(t-1)
frml gma2 = %LNGAMMA(1.0+1.0/bl)
frml cp = cp1(t)*(1-u(t))+cp2(t)*u(t)
frml gln1 =al*gma1(t)+log(al)-log(x(t)) $
+al*log(x(t)/(psi(t)=cp(t)))-(exp(gma1(t))*x(t)/psi(t))**al
frml gln2 =bl*gma2(t)+log(bl)-log(x(t)) $
+bl*log(x(t)/(psi(t)=cp(t)))-(exp(gma2(t))*x(t)/psi(t))**bl
frml gln = gln1(t)*(1-u(t))+gln2(t)*u(t)
smpl 2 3534
compute a1 = 0.2, a2 = 0.85, al = 0.9
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compute b0 = 1.8, b2 = 0.5, bl = 0.8
maximize(method=bhhh,recursive,iterations=150) gln
set fv = cp(t)
set resid = x(t)/fv(t)
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

EXERCISES

1. Let rt be the log return of an asset at time t . Assume that {rt } is a Gaussian white
noise series with mean 0.05 and variance 1.5. Suppose that the probability of a
trade at each time point is 40% and is independent of rt . Denote the observed
return by ro

t . Is ro
t serially correlated? If yes, calculate the first three lags of auto-

correlations of ro
t .

2. Let Pt be the observed market price of an asset, which is related to the fundamen-
tal value of the asset P∗

t via Eq. (5.9). Assume that �P∗
t = P∗

t − P∗
t−1 forms

a Gaussian white noise series with mean zero and variance 1.0. Suppose that the
bid-ask spread is two ticks. What is the lag-1 autocorrelation of the price change
series �Pt = Pt − Pt−1 when the tick size is $1/8? What is the lag-1 autocorre-
lation of the price change when the tick size is $1/16?

3. The file “ibm-d2-dur.dat” contains the adjusted durations between trades of IBM
stock on November 2, 1990. The file has three columns consisting of day, time of
trade measured in seconds from midnight, and adjusted durations.

(a) Build an EACD model for the adjusted duration and check the fitted model.

(b) Build a WACD model for the adjusted duration and check the fitted model.

(c) Build a GACD model for the adjusted duration and check the fitted model.

(d) Compare the prior three duration models.

4. The file “mmm9912-dtp.dat” contains the transactions data of the stock of 3M
Company in December 1999. There are three columns: day of the month, time
of transaction in seconds from midnight, and transaction price. Transactions that
occurred after 4:00 pm Eastern time are excluded.

(a) Is there a diurnal pattern in 3M stock trading? You may construct a time series
nt , which denotes the number of trades in 5-minute time interval to answer
this question.

(b) Use the price series to confirm the existence of bid-ask bounce in intraday
trading of 3M stock.

(c) Tabulate the frequencies of price change in multiples of tick size $1/16. You
may combine changes with 5 ticks or more into a category and those with −5
ticks or beyond into another category.

5. Consider again the transactions data of 3M stock in December 1999.
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(a) Use the data to construct an intraday 5-minute log return series. Use the sim-
ple average of all transaction prices within a 5-minute interval as the stock
price for the interval. Is the series serially correlated? You may use Ljung–
Box statistics to test the hypothesis with the first 10 lags of sample autocor-
relation function.

(b) There are seventy-seven 5-minute returns in a normal trading day. Some
researchers suggest that the sum of squares of the intraday 5-minute returns
can be used as a measure of daily volatility. Apply this approach and calculate
the daily volatility of the log return of 3M stock in December 1999. Discuss
the validity of such a procedure to estimate daily volatility.

6. The file “mmm9912-adur.dat” contains an adjusted intraday trading duration of
3M stock in December 1999. There are thirty-nine 10-minute time intervals in
a trading day. Let di be the average of all log durations for the i th 10-minute
interval across all trading days in December 1999. Define an adjusted duration as
t j/ exp(di ), where j is in the i th 10-minute interval. Note that more sophisticated
methods can be used to adjust the diurnal pattern of trading duration. Here we
simply use a local average.
(a) Is there a diurnal pattern in the adjusted duration series? Why?
(b) Build a duration model for the adjusted series using exponential innovations.

Check the fitted model.
(c) Build a duration model for the adjusted series using Weibull innovations.

Check the fitted model.
(d) Build a duration model for the adjusted series using generalized Gamma

innovations. Check the fitted model.
(e) Compare and comment on the three duration models built before.
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C H A P T E R 6

Continuous-Time Models and
Their Applications

Price of a financial asset evolves over time and forms a stochastic process, which is
a statistical term used to describe the evolution of a random variable over time. The
observed prices are a realization of the underlying stochastic process. The theory
of stochastic process is the basis on which the observed prices are analyzed and
statistical inference is made.

There are two types of stochastic process for modeling the price of an asset. The
first type is called the discrete-time stochastic process, in which the price changes at
discrete time points. All the processes discussed in the previous chapters belong to
this category. For example, the daily closing price of IBM stock on the New York
Stock Exchange forms a discrete-time stochastic process. Here the price changes
only at the closing of a trading day. Price movements within a trading day are not
necessarily relevant to the observed daily price. The second type of stochastic process
is the continuous-time process, in which the price changes continuously, even though
the price is only observed at discrete time points. One can think of the price as the
“true value” of the stock that always exists and is time varying.

For both types of process, the price can be continuous or discrete. A continu-
ous price can assume any positive real number, whereas a discrete price can only
assume a countable number of possible values. Assume that the price of an asset is
a continuous-time stochastic process. If the price is a continuous random variable,
then we have a continuous-time continuous process. If the price itself is discrete, then
we have a continuous-time discrete process. Similar classifications apply to discrete-
time processes. The series of price change in Chapter 5 is an example of discrete-time
discrete process.

In this chapter, we treat the price of an asset as a continuous-time continuous
stochastic process. Our goal is to introduce the statistical theory and tools needed
to model financial assets and to price options. We begin the chapter with some ter-
minologies of stock options used in the chapter. In Section 6.2, we provide a brief
introduction of Brownian motion, which is also known as a Wiener process. We then
discuss some diffusion equations and stochastic calculus, including the well-known
Ito’s lemma. Most option pricing formulas are derived under the assumption that the
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price of an asset follows a diffusion equation. We use the Black–Scholes formula
to demonstrate the derivation. Finally, to handle the price variations caused by rare
events (e.g., a profit warning), we also study some simple diffusion models with
jumps.

If the price of an asset follows a diffusion equation, then the price of an option
contingent to the asset can be derived by using hedging methods. However, with
jumps the market becomes incomplete and there is no perfect hedging of options.
The price of an option is then valued either by using diversifiability of jump risk
or defining a notion of risk and choosing a price and a hedge that minimize this
risk. For basic applications of stochastic processes in derivative pricing, see Cox and
Rubinstein (1985) and Hull (1997).

6.1 OPTIONS

A stock option is a financial contract that gives the holder the right to trade a certain
number of shares of a specified common stock by a certain date for a specified price.
There are two types of options. A call option gives the holder the right to buy the
underlying stock; see Chapter 3 for a formal definition. A put option gives the holder
the right to sell the underlying stock. The specified price in the contract is called the
strike price or exercise price. The date in the contract is known as the expiration date
or maturity. American options can be exercised at any time up to the expiration date.
European options can be exercised only on the expiration date.

The value of a stock option depends on the value of the underlying stock. Let
K be the strike price and P be the stock price. A call option is in-the-money when
P > K , at-the-money when P = K , and out-of-the-money when P < K . A put
option is in-the-money when P < K , at-the-money when P = K , and out-of-the-
money when P > K . In general, an option is in-the-money when it would lead
to a positive cash flow to the holder if it were exercised immediately. An option is
out-of-the-money when it would lead to a negative cash flow to the holder if it were
exercised immediately. Finally, an option is at-the-money when it would lead to zero
cash flow if it were exercised immediately. Obviously, only in-the-money options are
exercised in practice. For more description on options, see Hull (1997).

6.2 SOME CONTINUOUS-TIME STOCHASTIC PROCESSES

In mathematical statistics, a continuous-time continuous stochastic process is defined
on a probability space (�, F,P), where � is a nonempty space, F is a σ -field con-
sisting of subsets of �, and P is a probability measure; see Chapter 1 of Billingsley
(1986). The process can be written as {x(η, t)}, where t denotes time and is continu-
ous in [0,∞). For a given t , x(η, t) is a real-valued continuous random variable (i.e.,
a mapping from� to the real line), and η is an element of�. For the price of an asset
at time t , the range of x(η, t) is the set of non-negative real numbers. For a given
η, {x(η, t)} is a time series with values depending on the time t . For simplicity, we
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write a continuous-time stochastic process as {xt } with the understanding that, for a
given t , xt is a random variable. In the literature, some authors use x(t) instead of xt

to emphasize that t is continuous. However, we use the same notation xt , but call it a
continuous-time stochastic process.

6.2.1 The Wiener Process

In a discrete-time econometric model, we assume that the shocks form a white noise
process, which is not predictable. What is the counterpart of shocks in a continuous-
time model? The answer is the increments of a Wiener process, which is also known
as a standard Brownian motion. There are many ways to define a Wiener process
{wt }. We use a simple approach that focuses on the small change
wt = wt+
t −wt

associated with a small increment 
t in time. A continuous-time stochastic process
{wt } is a Wiener process if it satisfies

1. 
wt = ε
√

t , where ε is a standard normal random variable, and

2. 
wt is independent of w j for all j ≤ t .

The second condition is a Markov property saying that conditional on the present
value wt , any past information of the process, w j with j < t , is irrelevant to the
futurewt+� with � > 0. From this property, it is easily seen that for any two nonover-
lapping time intervals
1 and
2, the incrementswt1+
1 −wt1 and wt2+
2 −wt2 are
independent. In finance, this Markov property is related to a weak form of efficient
market.

From the first condition,
wt is normally distributed with mean zero and variance

t . That is, 
wt ∼ N (0, 
t), where ∼ denotes probability distribution. Consider
next the process wt . We assume that the process starts at t = 0 with initial value w0,
which is fixed and often set to zero. Then wt − w0 can be treated as a sum of many
small increments. More specifically, define T = t


t , where 
t is a small positive
increment. Then

wt − w0 = wT 
t − w0 =
T∑

i=1


wi =
T∑

i=1

εi
√

t,

where 
wi = wi 
t − w(i−1)
t . Because εi ’s are independent, we have

E(wt − w0) = 0, Var(wt − w0) =
T∑

i=1


t = T 
t = t.

Thus, the increment in wt from time 0 to time t is normally distributed with mean
zero and variance t . To put it formally, for a Wiener process wt , we have that wt −
w0 ∼ N (0, t). This says that the variance of a Wiener process increases linearly with
the length of time interval.
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Figure 6.1. Four simulated Wiener processes.

Figure 6.1 shows four simulated Wiener processes on the unit time interval [0, 1].
They are obtained by using a simple version of the Donsker’s Theorem in the statis-
tical literature with n = 3000; see Donsker (1951) or Billingsley (1968).

Donsker’s Theorem
Assume that {zi }n

i=1 is a sequence of independent standard normal random variates.

For any t ∈ [0, 1], let [nt] be the integer part of nt . Define wn,t = 1√
n

∑[nt]
i=1 zi . Then

wn,t converges in distribution to a Wiener process wt on [0, 1] as n goes to infinity.
The four plots start with w0 = 0, but drift apart as time increases, illustrating that

the variance of a Wiener process increases with time. A simple time transformation
from [0, 1) to [0,∞) can be used to obtain simulated Wiener processes for t ∈
[0,∞).

Remark: A formal definition of a Brownian motion wt on a probability space
(�, F,P) is that it is a real-valued, continuous stochastic process for t ≥ 0 with
independent and stationary increments. In other words, wt satisfies

1. continuity: the map from t to wt is continuous almost surely with respect to
the probability measure P;

2. independent increments: if s ≤ t , wt − ws is independent of wv for all v ≤ s;
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3. stationary increments: if s ≤ t , wt − ws and wt−s − w0 have the same proba-
bility distribution.

It can be shown that the probability distribution of the increment wt − ws is normal
with mean µ(t − s) and variance σ 2(t − s). Furthermore, for any given time indexes
0 ≤ t1 < t2 < · · · < tk , the random vector (wt1, wt2 , . . . , wtk ) follows a multivariate
normal distribution. Finally, a Brownian motion is standard if w0 = 0 almost surely,
µ = 0, and σ 2 = 1.

Remark: An important property of Brownian motions is that their paths are not
differentiable almost surely. In other words, for a standard Brownian motion wt , it
can be shown that dwt/dt does not exist for all elements of � except for elements
in a subset �1 ⊂ � such that P(�1) = 0. As a result, we cannot use the usual
intergation in calculus to handle integrals involving a standard Brownian motion
when we consider the value of an asset over time. Another approach must be sought.
This is the purpose of discussing Ito’s calculus in the next section.

6.2.2 Generalized Wiener Processes

The Wiener process is a special stochastic process with zero drift and variance pro-
portional to the length of time interval. This means that the rate of change in expecta-
tion is zero and the rate of change in variance is 1. In practice, the mean and variance
of a stochastic process can evolve over time in a more complicated manner. Hence,
further generalization of stochastic process is needed. To this end, we consider the
generalized Wiener process in which the expectation has a drift rate µ and the rate
of variance change is σ 2. Denote such a process by xt and use the notation dy for a
small change in the variable y. Then the model for xt is

dxt = µ dt + σ dwt , (6.1)

where wt is a Wiener process. If we consider a discretized version of Eq. (6.1), then

xt − x0 = µt + σε
√

t

for increment from 0 to t . Consequently,

E(xt − x0) = µt, Var(xt − x0) = σ 2t.

The results say that the increment in xt has a growth rate of µ for the expectation
and a growth rate of σ 2 for the variance. In the literature, µ and σ of Eq. (6.1) are
referred to as the drift and volatility parameters of the generalized Wiener process xt .

6.2.3 Ito’s Processes

The drift and volatility parameters of a generalized Wiener process are time-
invariant. If one further extends the model by allowing µ and σ to be functions
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of the stochastic process xt , then we have an Ito’s process. Specifically, a process xt

is an Ito’s process if it satisfies

dxt = µ(xt , t) dt + σ(xt , t) dwt , (6.2)

where wt is a Wiener process. This process plays an important role in mathematical
finance and can be written as

xt = x0 +
∫ t

0
µ(xs, s) ds +

∫ t

0
σ(xs, s) dws ,

where x0 denotes the starting value of the process at time 0 and the last term on the
right-hand side is a stochastic integral. Equation (6.2) is referred to as a stochastic
diffusion equation with µ(xt , t) and σ(xt , t) being the drift and diffusion functions,
respectively.

The Wiener process is a special Ito’s process because it satisfies Eq. (6.2) with
µ(xt , t) = 0 and σ(xt , t) = 1.

6.3 ITO’S LEMMA

In finance, when using continuous-time models, it is common to assume that the price
of an asset is an Ito’s process. Therefore, to derive the price of a financial derivative,
one needs to use Ito’s calculus. In this section, we briefly review Ito’s lemma by
treating it as a natural extension of the differentiation in calculus. Ito’s lemma is the
basis of stochastic calculus.

6.3.1 Review of Differentiation

Let G(x) be a differentiable function of x . Using Taylor expansion, we have


G ≡ G(x +
x)− G(x) = ∂G

∂x

x + 1

2

∂2G

∂x2
(
x)2 + 1

6

∂3G

∂x3
(
x)3 + · · · .

Taking the limit as 
x → 0 and ignoring the higher order terms of 
x , we have

dG = ∂G

∂x
dx .

When G is a function of x and y, we have


G = ∂G

∂x

x + ∂G

∂y

y + 1

2

∂2G

∂x2
(
x)2 + ∂2G

∂x∂y

x 
y + 1

2

∂2G

∂y2
(
y)2 + · · · .

Taking the limit as 
x → 0 and 
y → 0, we have

dG = ∂G

∂x
dx + ∂G

∂y
dy.
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6.3.2 Stochastic Differentiation

Turn next to the case in which G is a differentiable function of xt and t , and xt is an
Ito’s process. The Taylor expansion becomes


G = ∂G

∂x

x + ∂G

∂t

t + 1

2

∂2G

∂x2
(
x)2+ ∂2G

∂x∂t

x 
t + 1

2

∂2G

∂t2
(
t)2+· · · . (6.3)

A discretized version of the Ito’s process is


x = µ
t + σε
√

t, (6.4)

where, for simplicity, we omit the arguments of µ and σ , and 
x = xt+
t − xt .
From Eq. (6.4), we have

(
x)2 = µ2(
t)2 + σ 2ε2
t + 2µσε(
t)3/2 = σ 2ε2
t + H (
t), (6.5)

where H (
t) denotes higher order terms of 
t . This result shows that (
x)2 con-
tains a term of order
t , which cannot be ignored when we take the limit as
t → 0.
However, the first term in the right-hand side of Eq. (6.5) has some nice properties:

E(σ 2ε2
t) = σ 2
t,

Var(σ 2ε2
t) = E[σ 4ε4(
t)2] − [E(σ 2ε2
t)]2 = 2σ 4(
t)2,

where we use E(ε4) = 3 for a standard normal random variable. These two prop-
erties show that σ 2ε2
t converges to a nonstochastic quantity σ 2
t as 
t → 0.
Consequently, from Eq. (6.5), we have

(
x)2 → σ 2 dt as 
t → 0.

Plugging the prior result into Eq. (6.3) and using the Ito’s equation of xt in Eq. (6.2),
we obtain

dG = ∂G

∂x
dx + ∂G

∂t
dt + 1

2

∂2G

∂x2
σ 2 dt

=
(
∂G

∂x
µ+ ∂G

∂t
+ 1

2

∂2G

∂x2
σ 2

)
dt + ∂G

∂x
σ dwt ,

which is the well-known Ito’s lemma in Stochastic Calculus.
Recall that we suppressed the argument (xt , t) from the drift and volatility terms

µ and σ in the derivation of Ito’s lemma. To avoid any possible confusion in the
future, we restate the lemma as follows.
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Ito’s Lemma
Assume that xt is a continuous-time stochastic process satisfying

dxt = µ(xt , t) dt + σ(xt , t) dwt ,

where wt is a Wiener process. Furthermore, G(xt , t) is a differentiable function of
xt and t . Then,

dG =
[
∂G

∂x
µ(xt , t)+ ∂G

∂t
+ 1

2

∂2G

∂x2
σ 2(xt , t)

]
dt + ∂G

∂x
σ(xt , t) dwt . (6.6)

Example 6.1. As a simple illustration, consider the square function
G(wt , t) = w2

t of the Wiener process. Here we have µ(wt , t) = 0, σ(wt , t) = 1 and

∂G

∂wt
= 2wt ,

∂G

∂t
= 0,

∂2G

∂w2
t

= 2.

Therefore,

dw2
t =

(
2wt × 0 + 0 + 1

2
× 2 × 1

)
dt + 2wt dwt = dt + 2wt dwt . (6.7)

6.3.3 An Application

Let Pt be the price of a stock at time t , which is continuous in [0,∞). In the literature,
it is common to assume that Pt follows the special Ito’s process

d Pt = µPt dt + σ Pt dwt , (6.8)

where µ and σ are constant. Using the notation of the general Ito’s process in
Eq. (6.2), we have µ(xt , t) = µxt and σ(xt , t) = σ xt , where xt = Pt . Such a
special process is referred to as a geometric Brownian motion. We now apply the
Ito’s lemma to obtain a continuous-time model for the logarithm of the stock price
Pt . Let G(Pt , t) = ln(Pt ) be the log price of the underlying stock. Then we have

∂G

∂Pt
= 1

Pt
,

∂G

∂t
= 0,

1

2

∂2G

∂P2
t

= 1

2

−1

P2
t
.

Consequently, via Ito’s lemma, we obtain

d ln(Pt ) =
(

1

Pt
µPt + 1

2

−1

P2
t
σ 2 P2

t

)
dt + 1

Pt
σ Pt dwt =

(
µ− σ 2

2

)
dt + σ dwt .
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This result shows that the logarithm of a price follows a generalized Wiener Process
with drift rate µ − σ 2/2 and variance rate σ 2 if the price is a geometric Brownian
motion. Consequently, the change in logarithm of price (i.e., log return) between cur-
rent time t and some future time T is normally distributed with mean (µ−σ 2/2)(T −
t) and variance σ 2(T −t). If the time interval T −t = 
 is fixed and we are interested
in equally spaced increments in log price, then the increment series is a Gaussian
process with mean (µ− σ 2/2)
 and variance σ 2
.

6.3.4 Estimation of µ and σ

The two unknown parametersµ and σ of the geometric Brownian motion in Eq. (6.8)
can be estimated empirically. Assume that we have n + 1 observations of stock price
Pt at equally spaced time interval 
 (e.g., daily, weekly, or monthly). We measure

 in years. Denote the observed prices as {P0, P1, . . . , Pn} and let rt = ln(Pt ) −
ln(Pt−1) for t = 1, . . . , n.

Since Pt = Pt−1 exp(rt ), rt is the continuously compounded return in the t th
time interval. Using the result of the previous subsection and assuming that the stock
price Pt follows a geometric Brownian motion, we obtain that rt is normally dis-
tributed with mean (µ− σ 2/2)
 and variance σ 2
. In addition, rt s are not serially
correlated.

For simplicity, define µr = E(rt ) = (µ − σ 2/2)
 and σ 2
r = Var(rt ) = σ 2
.

Let r̄ and sr be the sample mean and standard deviation of the data—that is,

r̄ =
∑n

t=1 rt

n
, sr =

√√√√ 1

n − 1

n∑
t=1

(rt − r̄)2.

As mentioned in Chapter 1, r̄ and sr are consistent estimates of the mean and standard
deviation of ri , respectively. That is, r̄ → µr and sr → σr as n → ∞. Therefore,
we may estimate σ by

σ̂ = sr√


.

Furthermore, it can be shown that the standard error of this estimate is approximately
σ̂ /

√
2n. From µ̂r = r̄ , we can estimate µ by

µ̂ = r̄



+ σ̂ 2

2
= r̄



+ s2

r

2

.

When the series rt is serially correlated or when the price of the asset does not
follow the geometric Brownian motion in Eq. (6.8), then other estimation methods
must be used to estimate the drift and volatility parameters of the diffusion equation.
We return to this issue later.
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Example 6.2. Consider the daily log returns of IBM stock in 1998. Fig-
ure 6.2(a) shows the time plot of the data, which have 252 observations. Figure 6.2(b)
shows the sample autocorrelations of the series. It is seen that the log returns are
indeed serially uncorrelated. The Ljung–Box statistic gives Q(10) = 4.9, which
is highly insignificant compared with a chi-squared distribution with 10 degrees of
freedom.

If we assume that the price of IBM stock in 1998 follows the geometric Brownian
motion in Eq. (6.8), then we can use the daily log returns to estimate the parameters
µ and σ . From the data, we have r̄ = 0.002276 and sr = 0.01915. Since 1 trading
day is equivalent to 
 = 1/252 year, we obtain that

σ̂ = sr√



= 0.3040, µ̂ = r̄



+ σ̂ 2

2
= 0.6198.

Thus, the estimated expected return was 61.98% and the standard deviation was
30.4% per annum for IBM stock in 1998.

The normality assumption of the daily log returns may not hold, however. In this
particular instance, the skewness −0.464(0.153) and excess kurtosis 2.396(0.306)
raise some concern, where the number in parentheses denotes asymptotic standard
error.
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Figure 6.2. Daily returns of IBM stock in 1998: (a) log returns, and (b) sample autocorrela-
tions.
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Example 6.3. Consider the daily log return of the stock of Cisco Systems,
Inc. in 1999. There are 252 observations, and the sample mean and standard devi-
ation are 0.00332 and 0.026303, respectively. The log return series also shows no
serial correlation with Q(12) = 10.8, which is not significant even at the 10% level.
Therefore, we have

σ̂ = sr√



= 0.00332√
1.0/252.0

= 0.418, µ̂ = r̄



+ σ̂ 2

2
= 0.924.

Consequently, the estimated expected return for Cisco Systems’ stock was 92.4% per
annum, and the estimated standard deviation was 41.8% per annum in 1999.

6.4 DISTRIBUTIONS OF STOCK PRICES AND LOG RETURNS

The result of the previous section shows that if one assumes that price of a stock
follows the geometric Brownian motion

d Pt = µPt dt + σ Pt dwt ,

then the logarithm of the price follows a generalized Wiener process

d ln(Pt ) =
(
µ− σ 2

2

)
dt + σ dwt ,

where Pt is the price of the stock at time t and wt is a Wiener process. Therefore, the
change in log price from time t to T is normally distributed as

ln(PT )− ln(Pt ) ∼ N

[(
µ− σ 2

2

)
(T − t), σ 2(T − t)

]
. (6.9)

Consequently, conditional on the price Pt at time t , the log price at time T > t is
normally distributed as

ln(PT ) ∼ N

[
ln(Pt )+

(
µ− σ 2

2

)
(T − t), σ 2(T − t)

]
. (6.10)

Using the result of lognormal distribution discussed in Chapter 1, we obtain the (con-
ditional) mean and variance of PT as

E(PT ) = Pt exp[µ(T − t)],
Var(PT ) = P2

t exp[2µ(T − t)]{exp[σ 2(T − t)] − 1}.

Note that the expectation confirms that µ is the expected rate of return of the stock.
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The prior distribution of stock price can be used to make inference. For example,
suppose that the current price of Stock A is $50, the expected return of the stock is
15% per annum, and the volatility is 40% per annum. Then the expected price of
Stock A in 6-month (0.5 year) and the associated variance are given by

E(PT ) = 50 exp(0.15 × 0.5) = 53.89,

Var(PT ) = 2500 exp(0.3 × 0.5)[exp(0.16 × 0.5)− 1] = 241.92.

The standard deviation of the price 6 months from now is
√

241.92 = 15.55.
Next, let r be the continuously compounded rate of return per annum from time t

to T . Then we have

PT = Pt exp[r(T − t)],
where T and t are measured in years. Therefore,

r = 1

T − t
ln

(
PT

Pt

)
.

By Eq. (6.9), we have

ln

(
PT

Pt

)
∼ N

[(
µ− σ 2

2

)
(T − t), σ 2(T − t)

]
.

Consequently, the distribution of the continuously compounded rate of return per
annum is

r ∼ N

(
µ− σ 2

2
,
σ 2

T − t

)
.

The continuously compounded rate of return is, therefore, normally distributed with
mean µ− σ 2/2 and standard deviation σ/

√
T − t .

Consider a stock with an expected rate of return of 15% per annum and a volatility
of 10% per annum. The distribution of the continuously compounded rate of return
of the stock over two years is normal with mean 0.15−0.01/2 = 0.145 or 14.5% per
annum and standard deviation 0.1/

√
2 = 0.071 or 7.1% per annum. These results

allow us to construct confidence intervals (C.I.) for r . For instance, a 95% C.I. for r
is 0.145±1.96 × 0.071 per annum (i.e., 0.6%, 28.4%).

6.5 DERIVATION OF BLACK–SCHOLES DIFFERENTIAL EQUATION

In this section, we use Ito’s lemma and assume no arbitrage to derive the Black–
Scholes differential equation for the price of a derivative contingent to a stock valued
at Pt . Assume that the price Pt follows the geometric Brownian motion in Eq. (6.8)
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and Gt = G(Pt , t) is the price of a derivative (e.g., a call option) contingent on Pt .
By Ito’s lemma,

dGt =
(
∂Gt

∂Pt
µPt + ∂Gt

∂t
+ 1

2

∂2Gt

∂P2
t
σ 2 P2

t

)
dt + ∂Gt

∂Pt
σ Pt dwt .

The discretized versions of the process and previous result are


Pt = µPt 
t + σ Pt 
wt , (6.11)


Gt =
(
∂Gt

∂Pt
µPt + ∂Gt

∂t
+ 1

2

∂2Gt

∂P2
t
σ 2 P2

t

)

t + ∂Gt

∂Pt
σ Pt 
wt , (6.12)

where 
Pt and 
Gt are changes in Pt and Gt in a small time interval 
t . Because

wt = ε

√

t for both Eqs. (6.11) and (6.12), one can construct a portfolio of the

stock and the derivative that does not involve the Wiener process. The appropriate
portfolio is short on derivative and long ∂Gt

∂Pt
shares of the stock. Denote the value of

the portfolio by Vt . By construction,

Vt = −Gt + ∂Gt

∂Pt
Pt . (6.13)

The change in Vt is then


Vt = −
Gt + ∂Gt

∂Pt

Pt . (6.14)

Substituting Eqs. (6.11) and (6.12) into Eq. (6.14), we have


Vt =
(

−∂Gt

∂t
− 1

2

∂2Gt

∂P2
t
σ 2 P2

t

)

t. (6.15)

This equation does not involve the stochastic component 
wt . Therefore, under the
no arbitrage assumption, the portfolio Vt must be riskless during the small time inter-
val 
t . In other words, the assumptions used imply that the portfolio must instanta-
neously earn the same rate of return as other short-term, risk-free securities. Other-
wise there exists an arbitrage opportunity between the portfolio and the short-term,
risk-free securities. Consequently, we have


Vt = r Vt 
t, (6.16)

where r is the risk-free interest rate. By Eqs. (6.13) to (6.16), we have(
∂Gt

∂t
+ 1

2

∂2Gt

∂P2
t
σ 2 P2

t

)

t = r

(
Gt − ∂Gt

∂Pt
Pt

)

t.

Therefore,
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∂Gt

∂t
+ r Pt

∂Gt

∂Pt
+ 1

2
σ 2 P2

t
∂2Gt

∂P2
t

= rGt . (6.17)

This is the Black–Scholes differential equation for derivative pricing. It can be solved
to obtain the price of a derivative with Pt as the underlying variable. The solution so
obtained depends on the boundary conditions of the derivative. For a European call
option, the boundary condition is

GT = max(PT − K , 0),

where T is the expiration time and K is the strike price. For a European put option,
the boundary condition becomes

GT = max(K − PT , 0).

Example 6.4. As a simple example, consider a forward contract on a stock
that pays no dividend. In this case, the value of the contract is given by

Gt = Pt − K exp[−r(T − t)],

where K is the delivery price, r is the risk-free interest rate, and T is the expiration
time. For such a function, we have

∂Gt

∂t
= −r K exp[−r(T − t)], ∂Gt

∂Pt
= 1,

∂2Gt

∂P2
t

= 0.

Substituting these quantities into the left-hand side of Eq. (6.17) yields

−r K exp[−r(T − t)] + r Pt = r{Pt − K exp[−r(T − t)]},

which equals the right-hand side of Eq. (6.17). Thus, the Black–Scholes differential
equation is indeed satisfied.

6.6 BLACK–SCHOLES PRICING FORMULAS

Black and Scholes (1973) successfully solve their differential equation in Eq. (6.17)
to obtain exact formulas for the price of European call and put options. In what
follows, we derive these formulas using what is called Risk-Neutral Valuation in
finance.

6.6.1 Risk-Neutral World

The drift parameter µ drops out from the Black–Scholes differential equation. In
finance, this means the equation is independent of risk preferences. In other words,
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risk preferences cannot affect the solution of the equation. A nice consequence of
this property is that one can assume that investors are risk-neutral. In a risk-neutral
world, we have the following results:

• The expected return on all securities is the risk-free interest rate r , and
• The present value of any cash flow can be obtained by discounting its expected

value at the risk-free rate.

6.6.2 Formulas

The expected value of a European call option at maturity in a risk-neutral world is

E∗[max(PT − K , 0)],
where E∗ denotes expected value in a risk-neutral world. The price of the call option
at time t is

ct = exp[−r(T − t)]E∗[max(PT − K , 0)]. (6.18)

Yet in a risk-neutral world, we have µ = r , and by Eq. (6.10), ln(PT ) is normally
distributed as

ln(PT ) ∼ N

[
ln(Pt )+

(
r − σ 2

2

)
(T − t), σ 2(T − t)

]
.

Let g(PT ) be the probability density function of PT . Then the price of the call option
in Eq. (6.18) is

ct = exp[−r(T − t)]
∫ ∞

K
(PT − K )g(PT )d PT .

By changing the variable in the integration and some algebraic calculations (details
are given in Appendix A), we have

ct = Pt�(h+)− K exp[−r(T − t)]�(h−), (6.19)

where �(x) is the cumulative distribution function (CDF) of the standard normal
random variable evaluated at x ,

h+ = ln(Pt/K )+ (r + σ 2/2)(T − t)

σ
√

T − t

h− = ln(Pt/K )+ (r − σ 2/2)(T − t)

σ
√

T − t
= h+ − σ

√
T − t .

In practice,�(x) can easily be obtained from most statistical packages. Alternatively,
one can use an approximation given in Appendix B.
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The Black–Scholes call formula in Eq. (6.19) has some nice interpretations. First,
if we exercise the call option on the expiration date, we receive the stock, but we have
to pay the strike price. This exchange will take place only when the call finishes in-
the-money (i.e., PT > K ). The first term Pt�(h+) is the present value of receiving
the stock if and only if PT > K and the second term −K exp[−r(T − t)]�(h−)
is the present value of paying the strike price if and only if PT > K . A second
interpretation is particularly useful. As shown in the derivation of Black–Scholes
differential equation in Section 6.5, �(h+) = ∂Gt

∂Pt
is the number of shares in the

portfolio that does not involve uncertainty, the Wiener process. We know that ct =
Pt�(h+) + Bt , where Bt is the dollar amount invested in risk-free bonds in the
portfolio (or short on the derivative). We can then see that Bt = −K exp[−r(T −
t)]�(h−) directly from inspection of the Black–Scholes formula. The first term of
the formula Pt�(h+) is the amount invested in the stock, whereas the second term,
K exp[−r(T − t)]�(h−), is the amount borrowed.

Similarly, we can obtain the price of a European put option as

pt = K exp[−r(T − t)]�(−h−)− Pt�(−h+). (6.20)

Since the standard normal distribution is symmetric with respect to its mean 0.0, we
have�(x) = 1−�(−x) for all x . Using this property, we have�(−hi ) = 1−�(hi ).
Thus, the information needed to compute the price of a put option is the same as that
of a call option. Alternatively, using the symmetry of normal distribution, it is easy
to verify that

pt − ct = K exp[−r(T − t)] − Pt ,

which is referred to as the put-call parity and can be used to obtain pt from ct .

Example 6.5. Suppose that the current price of Intel stock is $80 per share
with volatility σ = 20% per annum. Suppose further that the risk-free interest rate
is 8% per annum. What is the price of a European call option on Intel with a strike
price of $90 that will expire in 3 months?

From the assumptions, we have Pt = 80, K = 90, T − t = 0.25, σ = 0.2, and
r = 0.08. Therefore,

h+ = ln(80/90)+ (0.08 + 0.04/2)× 0.25

0.2
√

0.25
= −0.9278

h− = h+ − 0.2
√

0.25 = −1.0278.

Using any statistical software (e.g., Minitab or SCA), or the approximation in
Appendix B, we have

�(−0.9278) = 0.1767, �(−1.0278) = 0.1520.

Consequently, the price of a European call option is

ct = $80�(−0.9278)− $90�(−1.0278) exp(−0.02) = $0.73.
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The stock price has to rise by $10.73 for the purchaser of the call option to break
even.

Under the same assumptions, the price of a European put option is

pt = $90 exp(−0.08 × 0.25)�(1.0278)− $80�(0.9278) = $8.95.

Thus, the stock price can rise an additional $1.05 for the purchaser of the put option
to break even.

Example 6.6. The strike price of the previous example is well beyond the
current stock price. A more realistic strike price is $85. Assume that the other con-
ditions of the previous example continue to hold. We now have Pt = 80, K = 85,
r = 0.08, and T − t = 0.25, and the hi s become

h+ = ln(80/85)+ (0.08 + 0.04/2)× 0.25

0.2
√

0.25
= −0.356246

h− = h+ − 0.2
√

0.25 = −0.456246.

Using the approximation in Appendix B, we have �(−0.356246) = 0.3608 and
�(−0.456246) = 0.3241. The price of a European call option is then

ct = $85�(−0.356246)− $85 exp(−0.02)�(−0.456246) = $1.86.

The price of the stock has to rise by $6.86 for the purchaser of the call option to
break even. Yet under the same assumptions, the price of a European put option is

pt = $85 exp(−0.02)�(0.456246)− $80�(0.356246)

= $85 exp(−0.02)× 0.6759 − $80 × 0.6392 = $5.18.

The stock price must fall $0.18 for the purchaser of the put option to break even.

6.6.3 Discussion

From the formulas, the price of a call or put option depends on five variables—
namely, the current stock price Pt , the strike price K , the time to expiration T − t
measured in years, the volatility σ per annum, and the interest rate r per annum. It
pays to study the effects of these five variables on the price of an option.

6.6.3.1 Marginal Effects
Consider first the marginal effects of the five variables on the price of a call option
ct . By marginal effects we mean that changing one variable while holding the others
fixed. The effects on a call option can be summarized as follows.
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Figure 6.3. Marginal effects of the current stock price on the price of an option with K = 80,
T − t = 0.25, σ = 0.3, and r = 0.06: (a) call option, and (b) put option.

1. The current stock price Pt : ct is positively related to ln(Pt ). In particular, ct →
0 as Pt → 0 and ct → ∞ as Pt → ∞. Figure 6.3(a) illustrates the effects with
K = 80, r = 6% per annum, T − t = 0.25 years, and σ = 30% per annum.

2. The strike price K : ct is negatively related to ln(K ). In particular, ct → Pt as
K → 0 and ct → 0 as K → ∞.

3. Time to expiration: ct is related to T − t in a complicated manner, but we can
obtain the limiting results by writing h+ and h− as

h+ = ln(Pt/K )

σ
√

T − t
+ (r + σ 2/2)

√
T − t

σ
,

h− = ln(Pt/K )

σ
√

T − t
+ (r − σ 2/2)

√
T − t

σ
.

If Pt < K , then ct → 0 as (T − t) → 0. If Pt > K , then ct → Pt − K as
(T − t) → 0 and ct → Pt as (T − t) → ∞. Figure 6.4(a) shows the marginal
effects of T −t on ct for three different current stock prices. The fixed variables
are K = 80, r = 6%, and σ = 30%. The solid, dotted, and dashed lines of the
plot are for Pt = 70, 80, and 90, respectively.
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Figure 6.4. Marginal effects of the time to expiration on the price of an option with K = 80,
σ = 0.3, and r = 0.06: (a) call option, and (b) put option. The solid, dotted, and dashed lines
are for the current stock price Pt = 70, 80, and 90, respectively.

4. Volatility σ : Rewriting h+ and h− as

h+ = ln(Pt/K )+ r(T − t)

σ
√

T − t
+ σ

2

√
T − t

h− = ln(Pt/K )+ r(T − t)

σ
√

T − t
− σ

2

√
T − t,

we obtain that (a) if ln(Pt/K ) + r(T − t) < 0, then ct → 0 as σ → 0, and
(b) if ln(Pt/K ) + r(T − t) ≥ 0, then ct → Pt − K e−r(T −t) as σ → 0 and
ct → Pt as σ → ∞. Figure 6.5(a) shows the effects of σ on ct for K = 80,
T − t = 0.25, r = 0.06, and three different values of Pt . The solid, dotted,
and dashed lines are for Pt = 70, 80, and 90, respectively.

5. Interest rate: ct is positively related to r such that ct → Pt as r → ∞.

The marginal effects of the five variables on a put option can be obtained similarly.
Part (b) of Figures 6.3–6.5 illustrates the effects for some selected cases.
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Figure 6.5. Marginal effects of stock volatility on the price of an option with K = 80, T −t =
0.25, and r = 0.06: (a) call option, and (b) put option. The solid, dotted, and dashed lines are
for the current stock price Pt = 70, 80, and 90, respectively.

6.6.3.2 Some Joint Effects
Figure 6.6 shows the joint effects of volatility and strike price on a call option, where
the other variables are fixed at Pt = 80, r = 0.06, and T − t = 0.25. As expected,
the price of a call option is higher when the volatility is high and the strike price is
well below the current stock price. Figure 6.7 shows the effects on a put option under
the same conditions. The price of a put option is higher when the volatility is high
and the strike price is well above the current stock price. Furthermore, the plot also
shows that the effects of a strike price on the price of a put option becomes more
linear as the volatility increases.

6.7 AN EXTENSION OF ITO’S LEMMA

In derivative pricing, a derivative may be contingent on multiple securities. When the
prices of these securities are driven by multiple factors, the price of the derivative is a
function of several stochastic processes. The two-factor model for the term structure
of interest rate is an example of two stochastic processes. In this section, we briefly
discuss the extension of Ito’s lemma to the case of several stochastic processes.
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Figure 6.6. Joint effects of stock volatility and the strike price on a call option with Pt = 80,
r = 0.06, and T − t = 0.25.
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Figure 6.7. Joint effects of stock volatility and the strike price on a put option with K = 80,
T − t = 0.25, and r = 0.06.
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Consider a k-dimensional continuous-time process xt = (x1t , . . . , xkt )
′, where k

is a positive integer and xit is a continuous-time stochastic process satisfying

dxit = µi (xt )dt + σi (xt ) dwi t , i = 1, . . . , k, (6.21)

where wi t is a Wiener process. It is understood that the drift and volatility functions
µi (xit ) and σi (xit ) are functions of time index t as well. We omit t from their argu-
ments to simplify the notation. For i �= j , the Wiener processes wi t and w j t are
different. We assume that the correlation between dwi t and dw j t is ρi j . This means
that ρi j is the correlation between the two standard normal random variables εi and
ε j defined by 
wi t = εi 
t and 
w j t = ε j 
t . Assume that Gt = G(xt , t) be a
function of the stochastic processes xit and time t . The Taylor expansion gives


Gt =
k∑

i=1

∂Gt

∂xit

xit + ∂Gt

∂t

t + 1

2

k∑
i=1

k∑
j=1

∂2Gt

∂xit∂x jt

xit 
x jt

+ 1

2

k∑
i=1

∂2Gt

∂xit∂t

xit 
t + · · · .

The discretized version of Eq. (6.21) is


wi t = µi (xt )
t + σi (xt )
wi t , i = 1, . . . , k.

Using a similar argument as that of Eq. (6.5) in Section 6.3, we can obtain that

lim

t→0

(
xit )
2 → σ 2

i (xt )dt (6.22)

lim

t→0


xit 
x jt → σi (xt )σ j (xt )ρi j dt. (6.23)

Using Eqs. (6.21)–(6.23), taking the limit as 
t → 0, and ignoring higher order
terms of 
t , we have

dGt =
[

k∑
i=1

∂Gt

∂xit
µi (xt )+ ∂Gt

∂t
+ 1

2

k∑
i=1

k∑
j=1

∂2Gt

∂xit∂x jt
σi (xt )σ j (xt )ρi j

]
dt

+
k∑

i=1

∂Gt

∂xit
σi (xt ) dwi t . (6.24)

This is a generalization of Ito’s lemma to the case of multiple stochastic processes.

6.8 STOCHASTIC INTEGRAL

We briefly discuss stochastic integration so that the price of an asset can be obtained
under the assumption that it follows an Ito’s process. We deduce the integration result
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using the Ito’s formula. For a rigorous treatment on the topic, readers may consult
textbooks on stochastic calculus. First, like the usual integration of a deterministic
function, integration is the opposite side of differentiation so that∫ t

0
dxs = xt − x0

continues to hold for a stochastic process xt . In particular, for the Wiener process wt ,
we have

∫ t
0 dws = wt because w0 = 0. Next, consider the integration

∫ t
0 ws dws .

Using the prior result and taking integration of Eq. (6.7), we have

w2
t = t + 2

∫ t

0
ws dws .

Therefore, ∫ t

0
ws dws = 1

2
(w2

t − t).

This is different from the usual deterministic integration for which
∫ t

0 y dy =
(y2

t − y2
0)/2.

Turn to the case that xt is a geometric Brownian motion—that is, xt satisfies

dxt = µxt dt + σ xt dwt ,

where µ and σ are constant with σ > 0; see Eq. (6.8). Applying the Ito’s lemma to
G(xt , t) = ln(xt ), we obtain

d ln(xt ) =
(
µ− σ 2

2

)
dt + σ dwt .

Taking integration and using the results obtained before, we have

∫ t

0
d ln(xs) =

(
µ− σ 2

2

)∫ t

0
ds + σ

∫ t

0
dws .

Consequently,

ln(xt ) = ln(x0)+ (µ− σ 2/2)t + σwt

and

xt = x0 exp[(µ− σ 2/2)t + σwt ].
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Changing the notation xt to Pt for the price of an asset, we have a solution for the
price under the assumption that it is a geometric Brownian motion. The price is

Pt = P0 exp[(µ− σ 2/2)t + σwt ]. (6.25)

6.9 JUMP DIFFUSION MODELS

Empirical studies have found that the stochastic diffusion model based on Brownian
motion fails to explain some characteristics of asset returns and the prices of their
derivatives (e.g., the “volatility smile” of implied volatilities; see Bakshi, Cao, and
Chen, 1997, and the references therein). Volatility smile is referred to as the convex
function between the implied volatility and strike price of an option. Both out-of-
the-money and in-the-money options tend to have higher implied volatilities than
at-the-money options especially in the foreign exchange markets. Volatility smile
is less pronounced for equity options. The inadequacy of the standard stochastic
diffusion model has led to the developments of alternative continuous-time models.
For example, jump diffusion and stochastic volatility models have been proposed in
the literature to overcome the inadequacy; see Merton (1976) and Duffie (1995).

Jumps in stock prices are often assumed to follow a probability law. For example,
the jumps may follow a Poisson process, which is a continuous-time discrete process.
For a given time t , let Xt be the number of times a special event occurs during the
time period [0, t]. Then Xt is a Poisson process if

Pr(Xt = m) = λmtm

m! exp(−λt), λ > 0.

That is, Xt follows a Poisson distribution with parameter λt . The parameter λ gov-
erns the occurrence of the special event and is referred to as the rate or intensity of
the process. A formal definition also requires that Xt be a right-continuous homoge-
neous Markov process with left-hand limit.

In this section, we discuss a simple jump diffusion model proposed by Kou
(2000). This simple model enjoys several nice properties. The returns implied by the
model are leptokurtic and asymmetric with respect to zero. In addition, the model
can reproduce volatility smile and provide analytical formulas for the prices of many
options. The model consists of two parts, with the first part being continuous and
following a geometric Brownian motion and the second part being a jump process.
The occurrences of jump are governed by a Poisson process, and the jump size
follows a double exponential distribution. Let Pt be the price of an asset at time t .
The simple jump diffusion model postulates that the price follows the stochastic
differential equation

d Pt

Pt
= µdt + σ dwt + d

(
nt∑

i=1

(Ji − 1)

)
, (6.26)
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where wt is a Wiener process, nt is a Poisson process with rate λ, and {Ji } is a
sequence of independent and identically distributed nonnegative random variables
such that X = ln(J ) has a double exponential distribution with probability density
function

fX (x) = 1

2η
e−|x−κ|/η, 0 < η < 1. (6.27)

In model (6.26), nt ,wt , and Ji are independent so that there is no relation between the
randomness of the model. Notice that nt is the number of jumps in the time interval
[0, t] and follows a Poisson distribution with parameter λt , where λ is a constant. At
the i th jump, the proportion of price jump is Ji − 1.

The double exponential distribution can be written as

X − κ =
{
ξ with probability 0.5
−ξ with probability 0.5,

(6.28)

where ξ is an exponential random variable with mean η and variance η2. The proba-
bility density function of ξ is

f (x) = 1

η
e−x/η, 0 < x < ∞.

Some useful properties of the double exponential distribution are

E(X) = κ, Var(X) = 2η2, E(eX ) = eκ

1 − η2
.

For finite samples, it is hard to distinguish a double exponential distribution from a
Student-t distribution. However, a double exponential distribution is more tractable
analytically and can generate a higher probability concentration (e.g., higher peak)
around its mean value. As stated in Chapter 1, histograms of observed asset returns
tend to have a higher peak than the normal density. Figure 6.8 shows the probability
density function of a double exponential random variable in the solid line and that
of a normal random variable in the dotted line. Both variables have mean zero and
variance 0.0008. The high peak of the double exponential density is clearly seen.

Solving the stochastic differential equation in Eq. (6.26), we obtain the dynamics
of the asset price as

Pt = P0 exp[(µ− σ 2/2)t + σwt ]
nt∏

i=1

Ji , (6.29)

where it is understood that
∏0

i=1 = 1. This result is a generalization of Eq. (6.25)
by including the stochastic jumps. It can be obtained as follows. Let ti be the time
of the i th jump. For t ∈ [0, t1), there is no jump and the price is given in Eq. (6.25).
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Figure 6.8. Probability density functions of a double exponential and a normal random vari-
able with mean zero and variance 0.0008. The solid line denotes the double exponential dis-
tribution.

Consequently, the left-hand price limit at time t1 is

Pt−1
= P0 exp[(µ− σ 2/2)t1 + σwt1].

At time t1, the proportion of price jump is J1 − 1 so that the price becomes

Pt1 = (1 + J1 − 1)Pt−1
= J1 Pt−1

= P0 exp[(µ− σ 2/2)t1 + σwt1]J1.

For t ∈ (t1, t2), there is no jump in the interval (t1, t] so that

Pt = Pt1 exp[(µ− σ 2/2)(t − t1)+ σ(wt − wt1)].
Plugging in Pt1 , we have

Pt = P0 exp[(µ− σ 2/2)t + σwt ]J1.

Repeating the scheme, we obtain Eq. (6.29).
From Eq. (6.29), the simple return of the underlying asset in a small time incre-

ment 
t becomes

Pt+
t − Pt

Pt
= exp

[(
µ− 1

2
σ 2
)

t + σ(wt+
t − wt )+

nt+
t∑
i=nt +1

Xi

]
− 1,
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where it is understood that a summation over an empty set is zero and Xi = ln(Ji ).
For a small 
t , we may use the approximation ex ≈ 1 + x + x2/2 and the result
(
wt )

2 ≈ 
t discussed in Section 6.3 to obtain

Pt+
t − Pt

Pt
≈
(
µ− 1

2
σ 2
)

t + σ 
wt +

nt+
t∑
i=nt+1

Ji + 1

2
σ 2(
wt )

2

≈ µ
t + σε
√

t +

nt+
t∑
i=nt +1

Xi ,

where 
wt = wt+
t − wt and ε is a standard normal random variable.
Under the assumption of Poisson process, the probability of having one jump in

the time interval (t, t +
t] is λ
t and that of having more than one jump is o(
t),
where the symbol o(
t) means that if we divide this term by 
t then its value tends
to zero as 
t tends to zero. Therefore, for a small 
t , by ignoring multiple jumps,
we have

nt+
t∑
i=nt +1

Xi ≈
{

Xnt+1 with probability λ
t
0 with probability 1 − λ
t .

Combining the prior results, we see that the simple return of the underlying asset is
approximately distributed as

Pt+
t − Pt

Pt
≈ µ
t + σε

√

t + I × X, (6.30)

where I is a Bernoulli random variable with Pr(I = 1) = λ
t and Pr(I = 0) =
1 − λ
t , and X is a double exponential random variable defined in Eq. (6.28).
Equation (6.30) reduces to that of a geometric Brownian motion without jumps.

Let G = µ
t +σε√
t + I × X be the random variable in the right-hand side of
Eq. (6.30). Using the independence between the exponential and normal distributions
used in the model, Kou (2000) obtains the probability density function of G as

g(x) = λ
t

2η
eσ

2 
t/(2η2)

{
e−ω/η�

(
ωη − σ 2
t

ση
√

t

)
+ eω/η�

(
ωη + σ 2
t

ση
√

t

)}

+ (1 − λ
t)
1

σ
√

t

f

(
x − µ
t

σ
√

t

)
, (6.31)

where ω = x − µ
t − κ , and f (.) and �(.) are, respectively, the probability den-
sity and cumulative distribution functions of the standard normal random variable.
Furthermore,

E(G) = µ
t + κλ
t, Var(G) = σ 2
t + λ
t[2η2 + κ2(1 − λ
t)].
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Figure 6.9. Density comparisons between a normal distribution and the distribution of
Eq. (6.31). The dotted line denotes the normal distribution. Both distributions have mean zero
and variance 2.0572×10−4. (a) Overall comparison, (b) comparison of the peaks, (c) left tails,
and (d) right tails.

Figure 6.9 shows some comparisons between probability density functions of a nor-
mal distribution and the distribution of Eq. (6.31). Both distributions have mean zero
and variance 2.0572 × 10−4. The mean and variance are obtained by assuming that
the return of the underlying asset satisfiesµ = 20% per annum, σ = 20% per annum,

t = 1 day = 1/252 years, λ = 10, κ = −0.02, and η = 0.02. In other words, we
assume that there are about 10 daily jumps per year with average jump size −2%,
and the jump volatility is 2%. These values are reasonable for a U.S. stock. From
the plots, the leptokurtic feature of the distribution derived from the jump diffusion
process in Eq. (6.26) is clearly shown. The distribution has a higher peak and fatter
tails than the corresponding normal distribution.

6.9.1 Option Pricing under Jump Diffusion

In the presence of random jumps, the market becomes incomplete. In this case, the
standard hedging arguments are not applicable to price an option. But we can still
derive an option pricing formula that does not depend on attitudes toward risk by
assuming that the number of securities available is very large so that the risk of the
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sudden jumps is diversifiable and the market will therefore pay no risk premium over
the risk-free rate for bearing this risk. Alternatively, for a given set of risk premiums,
one can consider a risk-neutral measure P∗ such that

d Pt

Pt
= [r − λE(J − 1)]dt + σ dwt + d

[
nt∑

i=1

(Ji − 1)

]

= (r − λψ)dt + σ dwt + d

[
nt∑

i=1

(Ji − 1)

]
,

where r is the risk-free interest rate, J = exp(X) such that X follows the double
exponential distribution of Eq. (6.27), ψ = eκ/(1 − η2) − 1, 0 < η < 1, and the
parameters κ, η,ψ , and σ become risk-neutral parameters taking consideration of
the risk premiums; see Kou (2000) for more details. The unique solution of the prior
equation is given by

Pt = P0 exp

[(
r − σ 2

2
− λψ

)
t + σwt

]
nt∏

i=1

Ji .

To price a European option in the jump diffusion model, it remains to compute the
expectation, under the measure P∗, of the discounted final payoff of the option. In
particular, the price of a European call option at time t is given by

ct = E∗[e−r(T−t)(PT − K )+]

= E∗

[
e−r(T −t)

(
Pt exp

[(
r − σ 2

2 − λψ

)
(T − t)+ σ

√
T − tε

]
nT∏
i=1

Ji − K

)
+

]
,

(6.32)

where T is the expiration time, (T − t) is the time to expiration measured in years,
K is the strike price, (y)+ = max(0, y), and ε is a standard normal random variable.
Kou (2000) shows that ct is analytically tractable as

ct =
∞∑

n=1

n∑
j=1

e−λ(T −t) λ
n(T − t)n

n!
2 j

22n−1

(
2n − j − 1

n − 1

)
× (A1,n, j + A2,n, j + A3,n, j ) (6.33)

+ e−λ(T −t)
[

Pt e
−λψ(T −t)�(h+)− K e−r(T −t)�(h−)

]
,

where �(.) is the CDF of the standard normal random variable,

A1,n, j = Pt e
−λψ(T −t)+nκ 1

2

[
1

(1 − η) j
+ 1

(1 + η) j

]
�(b+)− e−r(T−t)K�(b−)
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A2,n, j = 1

2
e−r(T −t)−ω/η+σ 2(T −t)/(2η2)K

×
j−1∑
i=0

[
1

(1 − η) j−i
− 1

](
σ
√

T − t

η

)i
1√
2π

Hhi (c−)

A3,n, j = 1

2
e−r(T −t)+ω/η+σ 2(T −t)/(2η2)K

×
j−1∑
i=0

[
1 − 1

(1 + η) j−i

](
σ
√

T − t

η

)i
1√
2π

Hhi (c+)

b± = ln(Pt/K )+ (r ± σ 2/2 − λψ)(T − t)+ nκ

σ
√

T − t

h± = ln(Pt/K )+ (r ± σ 2/2 − λψ)(T − t)

σ
√

T − t

c± = σ
√

T − t

η
± ω

σ
√

T − t

ω = ln(K/Pt )+ λψ(T − t)− (r − σ 2/2)(T − t)− nκ

ψ = eκ

1 − η2
− 1,

and the Hhi (.) functions are defined as

Hhn(x) = 1

n!
∫ ∞

x
(s − x)ne−s2/2ds, n = 0, 1, . . . (6.34)

and Hh−1(x) = exp(−x2/2), which is
√

2π f (x) with f (x) being the probability
density function of a standard normal random variable; see Abramowitz and Stegun
(1972). The Hhn(x) functions satisfy the recursion

nHhn(x) = Hhn−2(x)− x Hhn−1(x), n ≥ 1, (6.35)

with starting values Hh−1(x) = e−x2/2 and Hh0(x) = √
2π�(−x).

The pricing formula involves an infinite series, but its numerical value can be
approximated quickly and accurately through truncation (e.g., the first 10 terms).
Also, if λ = 0 (i.e., there are no jumps), then it is easily seen that ct reduces to the
Black–Scholes formula for a call option discussed before.

Finally, the price of a European put option under the jump diffusion model con-
sidered can be obtained by using the put-call parity—that is,

pt = ct + K e−r(T −t) − Pt .



APPENDIX A 251

Pricing formulas for other options under the jump diffusion model in Eq. (6.26) can
be found in Kou (2000).

Example 6.7. Consider the stock of Example 6.6, which has a current price
of $80. As before, assume that the strike price of a European option is K = $85 and
other parameters are r = 0.08 and T − t = 0.25. In addition, assume that the price
of the stock follows the jump diffusion model in Eq. (6.26) with parameters λ = 10,
κ = −0.02, and η = 0.02. In other words, there are about 10 jumps per year with
average jump size −2% and jump volatility 2%. Using the formula in Eq. (6.33), we
obtain ct = $2.25, which is higher than $1.86 of Example 6.6 when there are no
jumps. The corresponding put option assumes the value pt = $5.57, which is also
higher than what we had before. As expected, adding the jumps while keeping the
other parameters fixed increases the prices of both European options. Keep in mind,
however, that adding the jump process to the stock price in a real application often
leads to different estimates for the stock volatility σ .

6.10 ESTIMATION OF CONTINUOUS-TIME MODELS

Next we consider the problem of estimating directly the diffusion equation (i.e., the
Ito’s process) from discretely-sampled data. Here the drift and volatility functions
µ(xt , t) and σ(xt , t) are time-varying and may not follow a specific parametric form.
This is a topic of considerable interest in recent years. Details of the available meth-
ods are beyond the scope of this chapter. Hence, we only outline the approaches pro-
posed in the literature. Interested readers can consult the corresponding references
and Lo (1988).

There are several approaches available for estimating a diffusion equation. The
first approach is the quasi-maximum likelihood approach, which makes use of the
fact that for a small time interval dwt is normally distributed; see Kessler (1997) and
the references therein. The second approach uses methods of moments; see Con-
ley, Hansen, Luttmer, and Scheinkman (1997) and the references therein. The third
approach uses nonparametric methods; see Ait-Sahalia (1996, 1997). The fourth
approach uses semiparametric and reprojection methods; see Gallant and Long
(1997) and Gallant and Tauchen (1997). Recently, many researchers have applied
Markov Chain Monte Carlo methods to estimate the diffusion equation; see Eraker
(2001) and Elerian, Chib, and Shephard (2001).

APPENDIX A. INTEGRATION OF BLACK–SCHOLES FORMULA

In this appendix, we derive the price of a European call option given in Eq. (6.19).
Let x = ln(PT ). By changing variable and using g(PT )d PT = f (x) dx , where f (x)
is the probability density function of x , we have
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ct = exp[−r(T − t)]
∫ ∞

K
(PT − K )g(PT )d Pt

= e−r(T −t)
∫ ∞

ln(K )
(ex − K ) f (x) dx

= e−r(T −t)
[∫ ∞

ln(K )
ex f (x) dx − K

∫ ∞

ln(K )
f (x) dx

]
. (6.36)

Because x = ln(PT ) ∼ N [ln(Pt ) + (r − σ 2/2)(T − t), σ 2(T − t)], the integration
of the second term of Eq. (6.36) reduces to∫ ∞

ln(K )
f (x) dx = 1 −

∫ ln(K )

−∞
f (x) dx

= 1 − CDF(ln(K ))

= 1 −�(−h−) = �(h−),

where CDF ln(K )) is the cumulative distribution function (CDF) of x = ln(PT )

evaluated at ln(K ), �(.) is the CDF of the standard normal random variable, and

−h− = ln(K )− ln(Pt )− (r − σ 2/2)(T − t)

σ
√

T − t

= − ln(Pt/K )− (r − σ 2/2)(T − t)

σ
√

T − t
.

The integration of the first term of Eq. (6.36) can be written as

∫ ∞

ln(K )

1√
2π
√
σ 2(T − t)

exp

[
x − [x − ln(Pt )− (r − σ 2/2)(T − t)]2

2σ 2(T − t)

]
dx,

where the exponent can be simplified to

x − [x − {ln(Pt )+ (r − σ 2/2)(T − t)}]2

2σ 2(T − t)

= −[x − {ln(Pt )+ (r + σ 2/2)(T − t)}]2

2σ 2(T − t)
+ ln(Pt )+ r(T − t).

Consequently, the first integration becomes∫ ∞

ln(K )
ex f (x) dx

= Pt e
r(T −t)

∫ ∞

ln(K )

1√
2π
√
σ 2(T − t)

exp

[
−[x − {ln(Pt)+ (r + σ 2/2)(T − t)}]2

2σ 2(T − t)

]
dx,
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which involves the CDF of a normal distribution with mean ln(Pt )+ (r +σ 2/2)(T −
t) and variance σ 2(T − t). By using the same techniques as those of the second
intergation shown before, we have∫ ∞

ln(K )
ex f (x) dx = Pt e

r(T −t)�(h+),

where h+ is given by

h+ = ln(Pt/K )+ (r + σ 2/2)(T − t)

σ
√

T − t
.

Putting the two integration results together, we have

ct = e−r(T −t)[Pt e
r(T −t)�(h+)− K�(h−)] = Pt�(h+)− K e−r(T −t)�(h−).

APPENDIX B. APPROXIMATION TO STANDARD
NORMAL PROBABILITY

The CDF �(x) of a standard normal random variable can be approximated by

�(x) =
{

1 − f (x)[c1k + c2k2 + c3k3 + c4k4 + c5k5] if x ≥ 0
1 −�(−x) if x < 0,

where f (x) = exp(−x2/2)/
√

2π , k = 1/(1 + 0.2316419x), c1 = 0.319381530,
c2 = −0.356563782, c3 = 1.781477937, c4 = −1.821255978, and c5 =
1.330274429.

For illustration, using the earlier approximation, we obtain �(1.96) = 0.975002,
�(0.82) = 0.793892, and �(−0.61) = 0.270931. These probabilities are very close
to that obtained from a typical normal probability table.

EXERCISES

1. Assume that the log price pt = ln(Pt ) follows a stochastic differential equation

dpt = γ dt + σ dwt ,

where wt is a Wiener process. Derive the stochastic equation for the price Pt .

2. Considering the forward price F of a nondividend-paying stock, we have

Ft,T = Pt e
r(T −t),

where r is the risk-free interest rate, which is constant and Pt is the current
stock price. Suppose Pt follows the geometric Brownian motion d Pt = µPt dt +
σ Pt dwt . Derive a stochastic differential equation for Ft,T .
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3. Assume that the price of IBM stock follows the Ito’s process

d Pt = µPt dt + σ Pt dwt ,

where µ and σ are constant and wt is a standard Brownian motion. Consider
the daily log returns of IBM stock in 1997. The average return and the sample
standard deviation are 0.00131 and 0.02215, respectively. Use the data to estimate
the parameters µ and σ assuming that there were 252 trading days in 1997.

4. Suppose that the current price of a stock is $120 per share with volatility σ = 50%
per annum. Suppose further that the risk-free interest rate is 7% per annum and the
stock pays no dividend. (a) What is the price of a European call option contingent
on the stock with a strike price of $125 that will expire in 3 months? (b) What is
the price of a European put option on the same stock with a strike price of $118
that will expire in 3 months? If the volatility σ is increased to 80% per annum,
then what are the prices of the two options?

5. Derive the limiting marginal effects of the five variables K , Pt , T − t , σ , and r on
a European put option contingent on a stock.

6. A stock price is currently $60 per share and follows the geometric Brownian
motion d Pt = µPt dt +σ Pt dt . Assume that the expected returnµ from the stock
is 20% per annum and its volatility is 40% per annum. What is the probability
distribution for the stock price in 2 years? Obtain the mean and standard deviation
of the distribution and construct a 95% confidence interval for the stock price.

7. A stock price is currently $60 per share and follows the geometric Brownian
motion d Pt = µPt dt +σ Pt dt . Assume that the expected returnµ from the stock
is 20% per annum and its volatility is 40% per annum. What is the probability
distribution for the continuously compounded rate of return of the stock over 2
years? Obtain the mean and standard deviation of the distribution.

8. Suppose that the current price of Stock A is $70 per share and the price follows
the jump diffusion model in Eq. (6.26). Assume that the risk-free interest rate is
8% per annum and the stock volatility is 30% per annum. In addition, the price
on average has about 15 jumps per year with average jump size −2% and jump
volatility 3%. What is the price of a European call option with strike price $75
that will expire in 3 months? What is the price of the corresponding European put
option?
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C H A P T E R 7

Extreme Values, Quantile
Estimation, and Value at Risk

Extreme price movements in the financial markets are rare, but important. The stock
market crash on Wall Street in October 1987 and other big financial crises such as the
Long Term Capital Management have attracted a great deal of attention among prac-
titioners and researchers, and some people even called for government regulations on
the derivative markets. In recent years, the seemingly large daily price movements in
high-tech stocks have further generated discussions on market risk and margin set-
ting for financial institutions. As a result, value at risk (VaR) has become a widely
used measure of market risk in risk management.

In this chapter, we discuss various methods for calculating VaR and the statisti-
cal theories behind these methods. In particular, we consider the extreme value the-
ory developed in the statistical literature for studying rare (or extraordinary) events
and its application to VaR. Both unconditional and conditional concepts of extreme
values are discussed. The unconditional approach to VaR calculation for a finan-
cial position uses the historical returns of the instruments involved to compute VaR.
However, a conditional approach uses the historical data and explanatory variables
to calculate VaR.

Other approaches to VaR calculation discussed in the chapter are RiskMetrics,
econometric modeling using volatility models, and empirical quantile. We use daily
log returns of IBM stock to illustrate the actual calculation of all the methods dis-
cussed. The results obtained can therefore be used to compare the performance of
different methods. Figure 7.1 shows the time plot of daily log returns of IBM stock
from July 3, 1962 to December 31, 1998 for 9190 observations.

7.1 VALUE AT RISK

There are several types of risk in financial markets. Credit risk, liquidity risk, and
market risk are three examples. Value at risk (VaR) is mainly concerned with mar-
ket risk. It is a single estimate of the amount by which an institution’s position in a
risk category could decline due to general market movements during a given holding
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Figure 7.1. Time plot of daily log returns of IBM stock from July 3, 1962 to December 31,
1998.

period; see Duffie and Pan (1997) and Jorion (1997) for a general exposition of VaR.
The measure can be used by financial institutions to assess their risks or by a reg-
ulatory committee to set margin requirements. In either case, VaR is used to ensure
that the financial institutions can still be in business after a catastrophic event. From
the viewpoint of a financial institution, VaR can be defined as the maximal loss of
a financial position during a given time period for a given probability. In this view,
one treats VaR as a measure of loss associated with a rare (or extraordinary) event
under normal market conditions. Alternatively, from the viewpoint of a regulatory
committee, VaR can be defined as the minimal loss under extraordinary market cir-
cumstances. Both definitions will lead to the same VaR measure, even though the
concepts appear to be different.

In what follows, we define VaR under a probabilistic framework. Suppose that
at the time index t we are interested in the risk of a financial position for the next
� periods. Let �V (�) be the change in value of the assets in the financial position
from time t to t + �. This quantity is measured in dollars and is a random variable
at the time index t . Denote the cumulative distribution function (CDF) of �V (�) by
F�(x). We define the VaR of a long position over the time horizon � with probability
p as

p = Pr[�V (�) ≤ VaR] = F�(VaR). (7.1)
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Since the holder of a long financial position suffers a loss when �V (�) < 0, the
VaR defined in Eq. (7.1) typically assumes a negative value when p is small. The
negative sign signifies a loss. From the definition, the probability that the holder
would encounter a loss greater than or equal to VaR over the time horizon � is p.
Alternatively, VaR can be interpreted as follows. With probability (1− p), the poten-
tial loss encountered by the holder of the financial position over the time horizon �
is less than or equal to VaR.

The holder of a short position suffers a loss when the value of the asset increases
[i.e., �V (�) > 0]. The VaR is then defined as

p = Pr[�V (�) ≥ VaR] = 1 − Pr[�V (�) ≤ VaR] = 1 − F�(VaR).

For a small p, the VaR of a short position typically assumes a positive value. The
positive sign signifies a loss.

The previous definitions show that VaR is concerned with tail behavior of the
CDF F�(x). For a long position, the left tail of F�(x) is important. Yet a short posi-
tion focuses on the right tail of F�(x). Notice that the definition of VaR in Eq. (7.1)
continues to apply to a short position if one uses the distribution of −�V (�). There-
fore, it suffices to discuss methods of VaR calculation using a long position.

Fo any univariate CDF F�(x) and probability p, such that 0 < p < 1, the quantity

x p = inf{x | F�(x) ≥ p}

is called the pth quantile of F�(x), where inf denotes the smallest real number satis-
fying F�(x) ≥ p. If the CDF F�(x) of Eq. (7.1) is known, then VaR is simply its pth
quantile (i.e., VaR = x p). The CDF is unknown in practice, however. Studies of VaR
are essentially concerned with estimation of the CDF and/or its quantile, especially
the tail behavior of the CDF.

In practical applications, calculation of VaR involves several factors:

1. The probability of interest p, such as p = 0.01 or p = 0.05.

2. The time horizon �. It might be set by a regulatory committee, such as 1 day
or 10 days.

3. The frequency of the data, which might not be the same as the time horizon �.
Daily observations are often used.

4. The CDF F�(x) or its quantiles.

5. The amount of the financial position or the mark-to-market value of the port-
folio.

Among these factors, the CDF F�(x) is the focus of econometric modeling. Different
methods for estimating the CDF give rise to different approaches to VaR calculation.

Remark: The definition of VaR in Eq. (7.1) is in dollar amount. Since log returns
correspond approximately to percentage changes in value of a financial position,
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we use log returns rt in data analysis. The VaR calculated from the quantile of the
distribution of rt+1 given information available at time t is therefore in percentage.
The dollar amount of VaR is then the cash value of the financial position times the
VaR of the log return series.

Remark: VaR is a prediction concerning possible loss of a portfolio in a given
time horizon. It should be computed using the predictive distribution of future returns
of the financial position. For example, the VaR for a 1-day horizon of a portfolio
using daily returns rt should be calculated using the predictive distribution of rt+1
given information available at time t . From a statistical viewpoint, predictive distri-
bution takes into account the parameter uncertainty in a properly specified model.
However, predictive distribution is hard to obtain, and most of the available methods
for VaR calculation ignore the effects of parameter uncertainty.

7.2 RISKMETRICS

J.P. Morgan developed the RiskMetricsTM methodology to VaR calculation; see
Longerstaey and More (1995). In its simple form, RiskMetrics assumes that the
continuously compounded daily return of a portfolio follows a conditional normal
distribution. Denote the daily log return by rt and the information set available at
time t −1 by Ft−1. RiskMetrics assumes that rt | Ft−1 ∼ N (µt , σ

2
t ), where µt is the

conditional mean and σ 2
t is the conditional variance of rt . In addition, the method

assumes that the two quantities evolve over time according to the simple model:

µt = 0, σ 2
t = ασ 2

t−1 + (1 − α)r2
t−1, 1 > α > 0. (7.2)

Therefore, the method assumes that the logarithm of the daily price, pt = ln(Pt ),
of the portfolio satisfies the difference equation pt − pt−1 = at , where at = σtεt

is an IGARCH(1, 1) process without a drift. The value of α is often in the interval
(0.9, 1).

A nice property of such a special random-walk IGARCH model is that the con-
ditional distribution of a multiperiod return is easily available. Specifically, for a
k-period horizon, the log return from time t + 1 to time t + k (inclusive) is rt [k] =
rt+1 + · · · + rt+k−1 + rt+k . We use the square bracket [k] to denote a k-horizon
return. Under the special IGARCH(1,1) model in Eq. (7.2), the conditional distribu-
tion rt [k] | Ft is normal with mean zero and variance σ 2

t [k], where σ 2
t [k] can be

computed using the forecasting method discussed in Chapter 3. Using the indepen-
dence assumption of εt and model (7.2), we have

σ 2
t [k] = Var(rt [k] | Ft ) =

k∑
i=1

Var(at+i | Ft ),

where Var(at+i | Ft ) = E(σ 2
t+i | Ft ) can be obtained recursively. Using rt−1 =

at−1 = σt−1εt−1, we can rewrite the volatility equation of the IGARCH(1, 1) model
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in Eq. (7.2) as

σ 2
t = σ 2

t−1 + (1 − α)σ 2
t−1(ε

2
t−1 − 1) for all t .

In particular, we have

σ 2
t+i = σ 2

t+i−1 + (1 − α)σ 2
t+i−1(ε

2
t+i−1 − 1) for i = 2, . . . , k.

Since E(ε2
t+i−1 − 1 | Ft ) = 0 for i ≥ 2, the prior equation shows that

E(σ 2
t+i | Ft ) = E(σ 2

t+i−1 | Ft ) for i = 2, . . . , k. (7.3)

For the 1-step ahead volatility forecast, Eq. (7.2) shows that σ 2
t+1 = ασ 2

t +(1−α)r2
t .

Therefore, Eq. (7.3) shows that Var(rt+i | Ft ) = σ 2
t+1 for i ≥ 1 and hence, σ 2

t [k] =
kσ 2

t+1. The results show that rt [k] | Ft ∼ N (0, kσ 2
t+1). Consequently, under the

special IGARCH(1, 1)model in Eq. (7.2) the conditional variance of rt [k] is propor-
tional to the time horizon k. The conditional standard deviation of a k-period horizon
log return is then

√
kσt+1.

Suppose that the financial position is a long position so that loss occurs when
there is a big price drop (i.e., a large negative return). If the probability is set to 5%,
then RiskMetrics uses 1.65σt+1 to measure the risk of the portfolio—that is, it uses
the one-sided 5% quantile of a normal distribution with mean zero and standard
deviation σt+1. The actual 5% quantile is −1.65σt+1, but the negative sign is ignored
with the understanding that it signifies a loss. Consequently, if the standard deviation
is measured in percentage, then the daily VaR of the portfolio under RiskMetrics is

VaR = Amount of Position × 1.65σt+1,

and that of a k-day horizon is

VaR(k) = Amount of Position × 1.65
√

kσt+1,

where the argument (k) of VaR is used to denote the time horizon. Consequently,
under RiskMetrics, we have

VaR(k) = √
k × VaR.

This is referred to as the square root of time rule in VaR calculation under RiskMet-
rics.

Example 7.1. The sample standard deviation of the continuously com-
pounded daily return of the German Mark/U.S. Dollar exchange rate was about
0.53% in June 1997. Suppose that an investor was long in $10 million worth of
Mark/Dollar exchange rate contract. Then the 5% VaR for a 1-day horizon of the
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investor is

$10,000,000 × (1.65 × 0.0053) = $87,450.

The corresponding VaR for 1-month horizon (30 days) is

$10,000,000 × (
√

30 × 1.65 × 0.0053) ≈ $478,983.

Example 7.2. Consider the daily IBM log returns of Figure 7.1. As men-
tioned in Chapter 1, the sample mean of the returns is significantly different from
zero. However, for demonstration of VaR calculation using RiskMetrics, we assume
in this example that the conditional mean is zero and the volatility of the returns
follows an IGARCH(1, 1) model without a drift. The fitted model is

rt = at , at = σtεt , σ 2
t = 0.9396σ 2

t−1 + (1 − 0.9396)a2
t−1, (7.4)

where {εt } is a standard Gaussian white noise series. As expected, this model is
rejected by the Q-statistics. For instance, we have a highly significant statistic
Q(10) = 56.19 for the squared standardized residuals.

From the data and the fitted model, we have r9190 = −0.0128 and σ̂ 2
9190 =

0.0003472. Therefore, the 1-step ahead volatility forecast is σ̂ 2
9190(1) = 0.000336.

The 5% quantile of the conditional distribution r9191 | F9190 is −1.65×√
0.000336 =

−0.03025, where it is understood that the negative sign signifies a loss. Conse-
quently, the 1-day horizon 5% VaR of a long position of $10 million is

VaR = $10,000,000 × 0.03025 = $302,500.

The 1% quantile is −2.3262 × √
0.000336 = −0.04265, and the corresponding 1%

VaR for the same long position is $426,500.

7.2.1 Discussion

An advantage of RiskMetrics is simplicity. It is easy to understand and apply.
Another advantage is that it makes risk more transparent in the financial markets.
However, as security returns tend to have heavy tails (or fat tails), the normality
assumption used often results in underestimation of VaR. Other approaches to VaR
calculation avoid making such an assumption.

The square root of time rule is a consequence of the special model used by Risk-
Metrics. If either the zero mean assumption or the special IGARCH(1, 1) model
assumption of the log returns fails, then the rule is invalid. Consider the simple
model:

rt = µ+ at , at = σtεt , µ �= 0

σ 2
t = ασ 2

t−1 + (1 − α)a2
t−1,



262 VALUE AT RISK

where {εt } is a standard Gaussian white noise series. The assumption that µ �= 0
holds for returns of many heavily traded stocks on the NYSE; see Chapter 1. For
this simple model, the distribution of rt+1 given Ft is N (µ, σ 2

t+1). The 5% quantile
used to calculate the 1-period horizon VaR becomes µ − 1.65σt+1. For a k-period
horizon, the distribution of rt [k] given Ft is N (kµ, kσ 2

t+1), where as before rt [k] =
rt+1 + · · · + rt+k . The 5% quantile used in k-period horizon VaR calculation is
kµ − 1.65

√
kσt+1 = √

k(
√

kµ − 1.65σt+1). Consequently, VaR(k) �= √
k × VaR

when the mean return is not zero. It is also easy to show that the rule fails when the
volatility model of the return is not an IGARCH(1, 1) model without a drift.

7.2.2 Multiple Positions

In some applications, an investor may hold multiple positions and needs to compute
the overall VaR of the positions. RiskMetrics adopts a simple approach for doing
such a calculation under the assumption that daily log returns of each position follow
a random-walk IGARCH(1, 1)model. The additional quantities needed are the cross-
correlation coefficients between the returns. Consider the case of two positions. Let
VaR1 and VaR2 be the VaR for the two positions and ρ12 be the cross-correlation
coefficient between the two returns—that is,

ρ12 = Cov(r1t , r2t )/[Var(r1t )Var(r2t )]0.5.

Then the overall VaR of the investor is

VaR =
√

VaR2
1 + VaR2

2 + 2ρ12VaR1VaR2.

The generalization of VaR to a position consisting of m instruments is straightfor-
ward as

VaR =
√√√√ m∑

i=1

VaR2
i + 2

m∑
i< j

ρi j VaRi VaR j ,

where ρi j is the cross-correlation coefficient between returns of the i th and j th
instruments and VaRi is the VaR of the i th instrument.

7.3 AN ECONOMETRIC APPROACH TO VAR CALCULATION

A general approach to VaR calculation is to use the time-series econometric models
of Chapters 2 to 4. For a log return series, the time series models of Chapter 2 can
be used to model the mean equation, and the conditional heteroscedastic models
of Chapter 3 or 4 are used to handle the volatility. For simplicity, we use GARCH
models in our discussion and refer to the approach as an econometric approach to
VaR calculation. Other volatility models, including the nonlinear ones in Chapter 4,
can also be used.
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Consider the log return rt of an asset. A general time series model for rt can be
written as

rt = φ0 +
p∑

i=1

φi rt−i + at −
q∑

j=1

θ j at− j (7.5)

at = σtεt

σ 2
t = α0 +

u∑
i=1

αi a
2
t−i +

v∑
j=1

β jσ
2
t− j . (7.6)

Equations (7.5) and (7.6) are the mean and volatility equations for rt . These two
equations can be used to obtain 1-step ahead forecasts of the conditional mean and
conditional variance of rt assuming that the parameters are known. Specifically, we
have

r̂t (1) = φ0 +
p∑

i=1

φi rt+1−i −
q∑

j=1

θ j at+1− j

σ̂ 2
t (1) = α0 +

u∑
i=1

αi a
2
t+1−i +

v∑
j=1

β jσ
2
t+1− j .

If one further assumes that εt is Gaussian, then the conditional distribution of rt+1
given the information available at time t is N [r̂t (1), σ̂ 2

t (1)]. Quantiles of this condi-
tional distribution can easily be obtained for VaR calculation. For example, the 5%
quantile is r̂t (1)− 1.65σ̂t (1). If one assumes that εt is a standardized Student-t dis-
tribution with v degrees of freedom, then the quantile is r̂t (1) − t∗v (p)σ̂t (1), where
t∗v (p) is the pth quantile of a standardized Student-t distribution with v degrees of
freedom.

The relationship between quantiles of a Student-t distribution with v degrees of
freedom, denoted by tv , and those of its standardized distribution, denoted by t∗v , is

p = Pr(tv ≤ q) = Pr

(
tv√

v/(v − 2)
≤ q√

v/(v − 2)

)
= Pr

(
t∗v ≤ q√

v/(v − 2)

)
,

where v > 2. That is, if q is the pth quantile of a Student-t distribution with v degrees
of freedom, then q/

√
v/(v − 2) is the pth quantile of a standardized Student-t

distribution with v degrees of freedom. Therefore, if εt of the GARCH model in
Eq. (7.6) is a standardized Student-t distribution with v degrees of freedom and the
probability is p, then the quantile used to calculate the 1-period horizon VaR at time
index t is

r̂t (1)− tv(p)σ̂t (1)√
v/(v − 2)

,

where tv(p) is the pth quantile of a Student-t distribution with v degrees of freedom.
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Example 7.3. Consider again the daily IBM log returns of Example 7.2. We
use two volatility models to calculate VaR of 1-day horizon at t = 9190 for a long
position of $10 million. These econometric models are reasonable based on the mod-
eling techniques of Chapters 2 and 3.

Case 1
Assume that εt is standard normal. The fitted model is

rt = 0.00066 − 0.0247rt−2 + at , at = σtεt

σ 2
t = 0.00000389 + 0.0799a2

t−1 + 0.9073σ 2
t .

From the data, we have r9189 = −0.00201, r9190 = −0.0128, and σ 2
9190 =

0.00033455. Consequently, the prior AR(2)-GARCH(1, 1) model produces 1-step
ahead forecasts as

r̂9190(1) = 0.00071 and σ̂ 2
9190(1) = 0.0003211.

The 5% quantile is then

0.00071 − 1.6449 × √
0.0003211 = −0.02877,

where it is understood that the negative sign denotes left tail of the conditional normal
distribution. The VaR for a long position of $10 million with probability 0.05 is
VaR = $10,000,000 × 0.02877 = $287,700. The result shows that, with probability
95%, the potential loss of holding that position next day is $287,200 or less assuming
that the AR(2)-GARCH(1, 1) model holds. If the probability is 0.01, then the 1%
quantile is

0.00071 − 2.3262 × √
0.0003211 = −0.0409738.

The VaR for the position becomes $409,738.

Case 2
Assume that εt is a standardized Student-t distribution with 5 degrees of freedom.
The fitted model is

rt = 0.0003 − 0.0335rt−2 + at , at = σtεt

σ 2
t = 0.000003 + 0.0559a2

t−1 + 0.9350σ 2
t−1.

From the data, we have r9189 = −0.00201, r9190 = −0.0128, and σ 2
9190 = 0.000349.

Consequently, the prior Student-t AR(2)-GARCH(1, 1) model produces 1-step
ahead forecasts

r̂9190(1) = 0.000367 and σ̂ 2
9190(1) = 0.0003386.
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The 5% quantile of a Student-t distribution with 5 degrees of freedom is −2.015 and
that of its standardized distribution is −2.015/

√
5/3 = −1.5608. Therefore, the 5%

quantile of the conditional distribution of r9191 given F9190 is

0.000367 − 1.5608
√

0.0003386 = −0.028354.

The VaR for a long position of $10 million is

VaR = $10,000,000 × 0.028352 = $283,520,

which is essentially the same as that obtained under the normality assumption. The
1% quantile of the conditional distribution is

0.000367 − (3.3649/
√

5/3)
√

0.0003386 = −0.0475943.

The corresponding VaR is $475,943. Comparing with that of Case I, we see the
heavy-tail effect of using a Student-t distribution with 5 degrees of freedom; it
increases the VaR when the tail probability becomes smaller.

7.3.1 Multiple Periods

Suppose that at time h we like to compute the k-horizon VaR of an asset whose log
return is rt . The variable of interest is the k-period log return at the forecast origin
h (i.e., rh[k] = rh+1 + · · · + rh+k ). If the return rt follows the time series model in
Eqs. (7.5) and (7.6), then the conditional mean and variance of rh[k] given the infor-
mation set Fh can be obtained by the forecasting methods discussed in Chapters 2
and 3.

Expected Return and Forecast Error
The conditional mean E(rh[k] | Fh) can be obtained by the forecasting method of
ARMA models in Chapter 2. Specifically, we have

r̂h[k] = rh(1)+ · · · + rh(k),

where rh(�) is the �-step ahead forecast of the return at the forecast origin h. These
forecasts can be computed recursively as discussed in subsection 2.6.4. Using the
MA representation

rt = µ+ at + ψ1at−1 + ψ2at−2 + · · ·

of the ARMA model in Eq. (7.5), we can write the �-step ahead forecast error at the
forecast origin h as

eh(�) = rh+� − rh(�) = ah+� + ψ1ah+�−1 + · · · + ψ�−1ah+1;
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see Eq. (2.30) and the associated forecast error. The forecast error of the expected
k-period return r̂h[k] is the sum of 1-step to k-step forecast errors of rt at the forecast
origin h and can be written as

eh[k] = eh(1)+ eh(2)+ · · · + eh(k)

= ah+1 + (ah+2 + ψ1ah+1)+ · · · +
k−1∑
i=0

ψi ah+k−i

= ah+k + (1 + ψ1)ah+k−1 + · · · +
(

k−1∑
i=0

ψi

)
ah+1 (7.7)

where ψ0 = 1.

Expected Volatility
The volatility forecast of the k-period return at the forecast origin h is the condi-
tional variance of eh[k] given Fh . Using the independent assumption of εt+i for
i = 1, . . . , k, where at+i = σt+iεt+i , we have

Var(eh[k] | Fh) = Var(ah+k | Fh)+ (1 + ψ1)
2 Var(ah+k−1 | Fh)+ · · ·

+
(

k−1∑
i=0

ψi

)2

Var(ah+1 | Fh)

= σ 2
h (k)+ (1 + ψ1)

2σ 2
h (k − 1)+ · · · +

(
k−1∑
i=0

ψi

)2

σ 2
h (1),

where σ 2
h (�) is the �-step ahead volatility forecast at the forecast origin h. If the

volatility model is the GARCH model in Eq. (7.6), then these volatility forecasts can
be obtained recursively by the methods discussed in Chapter 3.

As an illustration, consider the special time series model

rt = µ+ at , at = σtεt

σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1.

Then we have ψi = 0 for all i > 0. The point forecast of the k-period return at the
forecast origin h is r̂h[k] = kµ and the associated forecast error is

eh[k] = ah+k + ah+k−1 + · · · + ah+1.

Consequently, the volatility forecast for the k-period return at the forecast origin h is

Var(eh[k] | Fh) =
k∑
�=1

σ 2
h (�).
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Using the forecasting method of GARCH(1, 1) models in Section 3.4, we have

σ 2
h (1) = α0 + α1a2

h + β1σ
2
h

σ 2
h (�) = α0 + (α1 + β1)σ

2
h (�− 1), � = 2, . . . , k. (7.8)

Thus, Var(eh[k] | Fh) can be obtained by the prior recursion. If εt is Gaussian, then
the conditional distribution of rh[k] given Fh is normal with mean kµ and variance
Var(eh[k] | Fh). The quantiles needed in VaR calculation are readily available.

Example 7.3. (continued) Consider the Gaussian AR(2)-GARCH(1, 1)model
of Example 7.3 for the daily log returns of IBM stock. Suppose that we are interested
in the VaR of a 15-day horizon starting at the forecast origin 9190 (i.e., December 31,
1998). We can use the fitted model to compute the conditional mean and variance
for the 15-day log return via r9190[15] = ∑15

i=1 r9190+i given F9190. The conditional
mean is 0.00998 and the conditional variance is 0.0047948, which is obtained by
the recursion in Eq. (7.8). The 5% quantile of the conditional distribution is then
0.00998 − 1.6449

√
0.0047948 = −0.1039191. Consequently, the 15-day horizon

VaR for a long position of $10 million is VaR = $10,000,000 × 0.1039191 =
$1,039,191. This amount is smaller than $287,700 × √

15 = $1,114,257. This
example further demonstrates that the square root of time rule used by RiskMetrics
holds only for the special white-noise IGARCH(1, 1) model used. When the condi-
tional mean is not zero, proper steps must be taken to compute the k-horizon VaR.

7.4 QUANTILE ESTIMATION

Quantile estimation provides a nonparametric approach to VaR calculation. It makes
no specific distributional assumption on the return of a portfolio except that the dis-
tribution continues to hold within the prediction period. There are two types of quan-
tile methods. The first method is to use empirical quantile directly, and the second
method uses quantile regression.

7.4.1 Quantile and Order Statistics

Assuming that the distribution of return in the prediction period is the same as that
in the sample period, one can use the empirical quantile of the return rt to calculate
VaR. Let r1, . . . , rn be the returns of a portfolio in the sample period. The order
statistics of the sample are these values arranged in increasing order. We use the
notation

r(1) ≤ r(2) ≤ · · · ≤ r(n)

to denote the arrangement and refer to r(i) as the i th order statistic of the sample. In
particular, r(1) is the sample minimum and r(n) the sample maximum.
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Assume that the returns are independent and identically distributed random vari-
ables that have a continuous distribution with probability density function (pdf) f (x)
and CDF F(x). Then we have the following asymptotic result from the statistical lit-
erature (e.g., Cox and Hinkley, 1974, Appendix 2), for the order statistic r(�), where
� = np with 0 < p < 1.

Result: Let x p be the pth quantile of F(x) [i.e., x p = F−1(p)]. Assume that
the pdf f (x) is not zero at x p [i.e., f (x p) �= 0]. Then the order statistic r(�) is
asymptotically normal with mean x p and variance p(1 − p)/[n f 2(x p)]. That is,

r(�) ∼ N

[
x p,

p(1 − p)

n[ f (x p)]2

]
, � = np. (7.9)

Based on the prior result, one can use r(�) to estimate the quantile x p , where
� = np. In practice, the probability of interest p may not satisfy that np is a positive
integer. In this case, one can use simple interpolation to obtain quantile estimates.
More specifically, for noninteger np, let �1 and �2 be the two neighboring positive
integers such that �1 < np < �2. Define pi = �i/n. The previous result shows that
r(�i ) is a consistent estimate of the quantile x pi . From the definition, p1 < p < p2.
Therefore, the quantile x p can be estimated by

x̂ p = p2 − p

p2 − p1
r(�1) + p − p1

p2 − p1
r(�2). (7.10)

Example 7.4. Consider the daily log returns of Intel stock from Decem-
ber 15, 1972 to December 31, 1997. There are 6329 observations. The empirical
5% quantile of the data can be obtained as

x̂0.05 = 0.55r(316) + 0.45r(317) = −4.229%,

where np = 6329 × 0.05 = 316.45 and r(i) is the i th order statistic of the sample.
In this particular instance, r(316) = −4.237% and r(317) = −4.220%. Here we use
the lower tail of the empirical distribution because it is relevant to holding a long
position in VaR calculation.

Example 7.5. Consider again the daily log returns of IBM stock from July 3,
1962 to December 31, 1998. Using all the 9190 observations, the empirical 5% quan-
tile can be obtained as (r(459) + r(460))/2 = −0.021603, where r(i) is the i th order
statistic and np = 9190×0.05 = 459.5. The VaR of a long position of $10 million is
$216,030, which is much smaller than those obtained by the econometric approach
discussed before. Because the sample size is 9190, we have 91 < 9190 × 0.01 < 92.
Let p1 = 91/9190 = 0.0099 and p2 = 92/9190 = 0.01001. The empirical 1%
quantile can be obtained as
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x̂0.01 = p2 − 0.01

p2 − p1
r(91) + 0.01 − p1

p2 − p1
r(92)

= 0.00001

0.00011
(−3.658)+ 0.0001

0.00011
(−3.657)

≈ −3.657.

The 1% 1-day horizon VaR of the long position is $365,709. Again, this amount is
lower than those obtained before by other methods.

Discussion: Advantages of using the prior quantile method to VaR calculation
include (a) simplicity, and (b) using no specific distributional assumption. However,
the approach has several drawbacks. First, it assumes that the distribution of the
return rt remains unchanged from the sample period to the prediction period. Given
that VaR is concerned mainly with tail probability, this assumption implies that the
predicted loss cannot be greater than that of the historical loss. It is definitely not so
in practice. Second, for extreme quantiles (i.e., when p is close to zero or unity), the
empirical quantiles are not efficient estimates of the theoretical quantiles. Third, the
direct quantile estimation fails to take into account the effect of explanatory variables
that are relevant to the portfolio under study. In real application, VaR obtained by the
empirical quantile can serve as a lower bound for the actual VaR.

7.4.2 Quantile Regression

In real application, one often has explanatory variables available that are important
to the problem under study. For example, the action taken by Federal Reserve Banks
on interest rates could have important impacts on the returns of U.S. stocks. It is then
more appropriate to consider the distribution function rt+1 | Ft , where Ft includes
the explanatory variables. In other words, we are interested in the quantiles of the
distribution function of rt+1 given Ft . Such a quantile is referred to as a regression
quantile in the literature; see Koenker and Bassett (1978).

To understand regression quantile, it is helpful to cast the empirical quantile of
the previous subsection as an estimation problem. For a given probability p, the pth
quantile of {rt } is obtained by

x̂ p = argminβ

n∑
i=1

wp(ri − β),

where wp(z) is defined by

wp(z) =
{

pz if z ≥ 0
(p − 1)z if z < 0.

Regression quantile is a generalization of such an estimate.
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To see the generalization, suppose that we have the linear regression

rt = β′xt + at , (7.11)

where β is a k-dimensional vector of parameters and xt is a vector of predictors that
are elements of Ft−1. The conditional distribution of rt given Ft−1 is a translation of
the distribution of at because β′xt is known. Viewing the problem this way, Koenker
and Bassett (1978) suggest to estimate the conditional quantile x p | Ft−1 of rt given
Ft−1 as

x̂ p | Ft−1 ≡ inf{β′
ox | Rp(βo) = min}, (7.12)

where “Rp(βo) = min” means that βo is obtained by

βo = argminβ

n∑
t=1

wp(rt − β′xt ),

where wp(.) is defined as before. A computer program to obtain such an estimated
quantile can be found in Koenker and D’Orey (1987).

7.5 EXTREME VALUE THEORY

In this section, we review some extreme value theory in the statistical literature.
Denote the return of an asset, measured in a fixed time interval such as daily, by rt .
Consider the collection of n returns, {r1, . . . , rn}. The minimum return of the col-
lection is r(1), that is, the smallest order statistic, whereas the maximum return is
r(n), the maximum order statistic. Specifically, r(1) = min1≤ j≤n{r j } and r(n) =
max1≤ j≤n{r j }. We focus on properties of the minimum return r(1) because this min-
imum is highly relevant to VaR calculation for a long position. However, the theory
discussed also applies to the maximum return of an asset over a given time period
because properties of the maximum return can be obtained from those of the min-
imum by a simple sign change. Specifically, we have r(n) = − min1≤ j≤n{−r j } =
−rc

(1), where rc
t = −rt with the superscript c denoting sign change. The maximum

return is relevant to holding a short financial position.

7.5.1 Review of Extreme Value Theory

Assume that the returns rt are serially independent with a common cumulative dis-
tribution function F(x) and that the range of the return rt is [l, u]. For log returns,
we have l = −∞ and u = ∞. Then the CDF of r(1), denoted by Fn,1(x), is given by

Fn,1(x) = Pr[r(1) ≤ x] = 1 − Pr[r(1) > x]
= 1 − Pr(r1 > x, r2 > x, . . . , rn > x)
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= 1 −
n∏

j=1

Pr(r j > x), (by independence)

= 1 −
n∏

j=1

[1 − Pr(r j ≤ x)]

= 1 −
n∏

j=1

[1 − F(x)] (by common distribution)

= 1 − [1 − F(x)]n. (7.13)

In practice, the CDF F(x) of rt is unknown and, hence, Fn,1(x) of r(1) is unknown.
However, as n increases to infinity, Fn,1(x) becomes degenerated—namely, Fn,1(x)
→ 0 if x ≤ l and Fn,1(x) → 1 if x > l as n goes to infinity. This degenerated CDF
has no practical value. Therefore, the extreme value theory is concerned with finding
two sequences {βn} and {αn}, where αn > 0, such that the distribution of r(1∗) ≡
(r(1) − βn)/αn converges to a nondegenerated distribution as n goes to infinity. The
sequence {βn} is a location series and {αn} is a series of scaling factors. Under the
independent assumption, the limiting distribution of the normalized minimum r(1∗)
is given by

F∗(x) =
{

1 − exp[−(1 + kx)1/k] if k �= 0
1 − exp[− exp(x)] if k = 0

(7.14)

for x < −1/k if k < 0 and for x > −1/k if k > 0, where the subscript ∗ signifies
the minimum. The case of k = 0 is taken as the limit when k → 0. The parameter k
is referred to as the shape parameter that governs the tail behavior of the limiting
distribution. The parameter α = −1/k is called the tail index of the distribution.

The limiting distribution in Eq. (7.14) is the generalized extreme value distribu-
tion of Jenkinson (1955) for the minimum. It encompasses the three types of limiting
distribution of Gnedenko (1943):

• Type I: k = 0, the Gumbel family. The CDF is

F∗(x) = 1 − exp[− exp(x)], −∞ < x < ∞. (7.15)

• Type II: k < 0, the Fréchet family. The CDF is

F∗(x) =
{

1 − exp[−(1 + kx)1/k] if x < −1/k
1 otherwise.

(7.16)

• Type III: k > 0, the Weibull family. The CDF here is

F∗(x) =
{

1 − exp[−(1 + kx)1/k] if x > −1/k
0 otherwise.
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Figure 7.2. Probability density functions of extreme value distributions for minimum: The
solid line is for a Gumbel distribution, the dotted line is for the Weibull distribution with
k = 0.5, and the dashed line for the Fréchet distribution with k = −0.9.

Gnedenko (1943) gave necessary and sufficient conditions for the CDF F(x) of rt to
be associated with one of the three types of limiting distribution. Briefly speaking,
the tail behavior of F(x) determines the limiting distribution F∗(x) of the minimum.
The (left) tail of the distribution declines exponentially for the Gumbel family, by a
power function for the Fréchet family, and is finite for the Weibull family. Readers are
referred to Embrechts, Kuppelberg, and Mikosch (1997) for a comprehensive treat-
ment of the extreme value theory. For risk management, we are mainly interested
in the Fréchet family that includes stable and Student-t distributions. The Gumbel
family consists of thin-tailed distributions such as normal and log-normal distribu-
tions. The probability density function (pdf) of the generalized limiting distribution
in Eq. (7.14) can be obtained easily by differentiation:

f∗(x) =
{
(1 + kx)1/k−1 exp[−(1 + kx)1/k] if k �= 0
exp[x − exp(x)] if k = 0,

(7.17)

where −∞ < x < ∞ for k = 0, x < −1/k for k < 0, and x > −1/k for k > 0.
The aforementioned extreme value theory has two important implications. First,

the tail behavior of the CDF F(x) of rt , not the specific distribution, determines
the limiting distribution F∗(x) of the (normalized) minimum. Thus, the theory is
generally applicable to a wide range of distributions for the return rt . The sequences
{βn} and {αn}, however, may depend on the CDF F(x). Second, Feller (1971, p. 279)
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shows that the tail index k does not depend on the time interval of rt . That is, the tail
index (or equivalently the shape parameter) is invariant under time aggregation. This
second feature of the limiting distribution becomes handy in the VaR calculation.

The extreme value theory has been extended to serially dependent observations
{rt }n

t=1 provided that the dependence is weak. Berman (1964) shows that the same
form of the limiting extreme value distribution holds for stationary normal sequences
provided that the autocorrelation function of rt is squared summable (i.e.,

∑∞
i=1 ρ

2
i <∞), where ρi is the lag-i autocorrelation function of rt . For further results concerning

the effect of serial dependence on the extreme value theory, readers are referred to
Leadbetter, Lindgren, and Rootzén (1983, Chapter 3).

7.5.2 Empirical Estimation

The extreme value distribution contains three parameters—k, βn , and αn . These
parameters are referred to as the shape, location, and scale parameter, respectively.
They can be estimated by using either parametric or nonparametric methods. We
review some of the estimation methods.

For a given sample, there is only a single minimum or maximum, and we cannot
estimate the three parameters with only an extreme observation. Alternative ideas
must be used. One of the ideas used in the literature is to divide the sample into sub-
samples and apply the extreme value theory to the subsamples. Assume that there
are T returns {r j }T

j=1 available. We divide the sample into g non-overlapping sub-
samples each with n observations, assuming for simplicity that T = ng. In other
words, we divide the data as

{r1, . . . , rn | rn+1, . . . , r2n | r2n+1, . . . , r3n | · · · | r(g−1)n+1, . . . , rng}
and write the observed returns as rin+ j , where 1 ≤ j ≤ n and i = 0, . . . , g − 1.
Notice that each subsample corresponds to a subperiod of the data span. When n is
sufficiently large, we hope that the extreme value theory applies to each subsample.
In application, the choice of n can be guided by practical considerations. For ex-
ample, for daily returns, n = 21 corresponds approximately to the number of trading
days in a month and n = 63 denotes the number of trading days in a quarter.

Let rn,i be the minimum of the i th subsample (i.e., rn,i is the smallest return
of the i th subsample), where the subscript n is used to denote the size of the sub-
sample. When n is sufficiently large, xn,i = (rn,i −βn)/αn should follow an extreme
value distribution, and the collection of subsample minima {rn,i | i = 1, . . . , g} can
then be regarded as a sample of g observations from that extreme value distribution.
Specifically, we define

rn,i = min
1≤ j≤n

{r(i−1)n+ j }, i = 1, . . . , g. (7.18)

The collection of subsample minima {rn,i } are the data we use to estimate the un-
known parameters of the extreme value distribution. Clearly, the estimates obtained
may depend on the choice of subperiod length n.
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7.5.2.1 The Parametric Approach
Two parametric approaches are available. They are the maximum likelihood and
regression methods.

Maximum likelihood method
Assuming that the subperiod minima {rn,i } follow a generalized extreme value dis-
tribution such that the pdf of xi = (rn,i −βn)/αn is given in Eq. (7.17), we can obtain
the pdf of rn,i by a simple transformation as

f (rn,i ) =
1

αn

[
1 + kn(rn,i − βn)

αn

]1/kn−1

exp

{
−

[
1 + kn(rn,i − βn)

αn

]1/kn
}

if kn �= 0

1

αn
exp

{
rn,i − βn

αn
− exp

[
rn,i − βn

αn

]}
if kn = 0,

where it is understood that 1 + kn(rn,i − βn)/αn > 0 if kn �= 0. The subscript n
is added to the shape parameter k to signify that its estimate depends on the choice
of n. Under the independence assumption, the likelihood function of the subperiod
minima is

�(rn,1, . . . , rn,g | kn, αn, βn) =
g∏

i=1

f (rn,i ).

Nonlinear estimation procedures can then be used to obtain maximum likelihood
estimates of kn , βn , and αn . These estimates are unbiased, asymptotically normal,
and of minimum variance under proper assumptions. We apply this approach to some
stock return series later.

Regression method
This method assumes that {rn,i }g

i=1 is a random sample from the generalized extreme
value distribution in Eq. (7.14) and make uses of properties of order statistics; see
Gumbel (1958). Denote the order statistics of the subperiod minima {rn,i }g

i=1 as

rn(1) ≤ rn(2) ≤ · · · ≤ rn(g).

Using properties of order statistics (e.g., Cox and Hinkley, 1974, p. 467), we have

E{F∗[rn(i)]} = i

g + 1
, i = 1, . . . , g. (7.19)

For simplicity, we separate the discussions into two cases depending on the value
of k. First, consider the case of k �= 0. From Eq. (7.14), we have
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F∗[rn(i)] = 1 − exp

{
−

[
1 + kn

rn(i) − βn

αn

]1/kn
}

(7.20)

Consequently, using Eqs. (7.19) and (7.20) and approximating expectation by an
observed value, we have

i

g + 1
= 1 − exp

{
−

[
1 + kn

rn(i) − βn

αn

]1/kn
}
.

Therefore,

exp

{
−

[
1 + kn

rn(i) − βn

αn

]1/kn
}

= 1 − i

g + 1
= g + 1 − i

g + 1
, i = 1, . . . , g.

Taking natural logarithm twice, the prior equation gives

ln

[
− ln

(
g + 1 − i

g + 1

)]
= 1

kn
ln

[
1 + kn

rn(i) − βn

αn

]
, i = 1, . . . , g.

In practice, letting ei be the deviation between the previous two quantities and assum-
ing that the series {et } is not serially correlated, we have a regression setup

ln

[
− ln

(
g + 1 − i

g + 1

)]
= 1

kn
ln

[
1 + kn

rn(i) − βn

αn

]
+ ei , i = 1, . . . , g. (7.21)

The least squares estimates of kn, βn , and αn can be obtained by minimizing the sum
of squares of ei .

When kn = 0, the regression setup reduces to

ln

[
− ln

(
g + 1 − i

g + 1

)]
= 1

αn
rn(i) − βn

αn
+ ei , i = 1, . . . , g.

The least squares estimates are consistent, but less efficient than the likelihood esti-
mates. We use the likelihood estimates in this chapter.

7.5.2.2 The Nonparametric Approach
The shape parameter k can be estimated using some nonparametric methods. We
mention two such methods here. These two methods are proposed by Hill (1975)
and Pickands (1975) and are referred to as the Hill estimator and Pickands estimator,
respectively. Both estimators apply directly to the returns {rt }T

t=1. Thus, there is no
need to consider subsamples. Denote the order statistics of the sample as

r(1) ≤ r(2) ≤ · · · ≤ r(T ).

Let q be a positive integer. The two estimators of k are defined as
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kp(q) = − 1

ln(2)
ln

[ −r(q) + r(2q)

−r(2q) + r(4q)

]
(7.22)

kh(q) = −1

q

q∑
i=1

{
ln[−r(i)] − ln[−r(q+1)]

}
, (7.23)

where the argument (q) is used to emphasize that the estimators depend on q. The
choice of q differs between Hill and Pickands estimators. It has been investigated
by several researchers, but there is no general consensus on the best choice avail-
able. Dekkers and De Haan (1989) show that kp(q) is consistent if q increases at a
properly chosen pace with the sample size T . In addition,

√
q[kp(q)−k] is asymptot-

ically normal with mean zero and variance k2(2−2k+1 + 1)/[2(2−k − 1) ln(2)]2. The
Hill estimator is applicable to the Fréchet distribution only, but it is more efficient
than the Pickands estimator when applicable. Goldie and Smith (1987) show that√

q[kh(q)−k] is asymptotically normal with mean zero and variance k2. In practice,
one may plot the Hill estimator kh(q) against q and find a proper q such that the
estimate appears to be stable.
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Figure 7.3. Maximum and minimum daily log returns of IBM stock when the subperiod is 21
trading days. The data span is from July 3, 1962 to December 31, 1998: (a) positive returns,
and (b) negative returns.
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7.5.3 Application to Stock Returns

We apply the extreme value theory to the daily log returns of IBM stock from July 3,
1962 to December 31, 1998. The returns are measured in percentages, and the sample
size is 9190 (i.e., T = 9190). Figure 7.3 shows the time plots of extreme daily log
returns when the length of the subperiod is 21, which corresponds approximately to
a month. The October 1987 crash is clearly seen from the plot. Excluding the 1987
crash, the range of extreme daily log returns is between 0.5% and 13%.

Table 7.1 summarizes some estimation results of the shape parameter k via the
Hill estimator. Three choices of q are reported in the table, and the results are stable.
To provide an overall picture of the performance of Hill estimator, Figure 7.4 shows

Table 7.1. Results of the Hill Estimator for Daily Log Returns
of IBM Stock From July 3, 1962 to December 31, 1998. Stan-
dard Errors are in Parentheses.

q 190 200 210

Maximum −0.300(0.022) −0.297(0.021) −0.303(0.021)
Minimum −0.290(0.021) −0.292(0.021) −0.289(0.020)
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Figure 7.4. Scatterplots of the Hill estimator for the daily log returns of IBM stock. The
sample period is from July 3, 1962 to December 31, 1998: (a) positive returns, and (b) negative
returns.
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the scatter plots of the Hill estimator kh(q) against q. For both positive and negative
extreme daily log returns, the estimator is stable except for cases when q is small.
The estimated shape parameters are about −0.30 and are significantly different from
zero at the asymptotic 5% level. The plots also indicate that the shape parameter k
appears to be smaller for the negative extremes, indicating that the daily log return
may have a heavier left tail. Overall, the result indicates that the distribution of daily
log returns of IBM stock belongs to the Fréchet family. The analysis thus rejects the
normality assumption commonly used in practice. Such a conclusion is in agreement
with that of Longin (1996), who used a U.S. stock market index series.

Next we apply the maximum likelihood method to estimate parameters of the gen-
eralized extreme value distribution for IBM daily log returns. Table 7.2 summarizes
the estimation results for different choices of the length of subperiods ranging from
1 month (n = 21) to 1 year (n = 252). From the table, we make the following
observations:

• Estimates of the location and scale parameters βn and αn increase in modulus
as n increases. This is expected as magnitudes of the subperiod minimum and
maximum are nondecreasing functions of n.

• Estimates of the shape parameter (or equivalently the tail index) are stable for
the negative extremes when n ≥ 63 and are approximately −0.33.

• Estimates of the shape parameter are less stable for the positive extremes. The
estimates are smaller in magnitude, but remain significantly different from zero.

• The results for n = 252 have higher variabilities as the number of subperiods g
is relatively small.

Again the conclusion obtained is similar to that of Longin (1996), who provided a
good illustration of applying the extreme value theory to stock market returns.

Table 7.2. Maximum Likelihood Estimates of the Extreme Value Distribution for
Daily Log Returns of IBM Stock From July 3, 1962 to December 31, 1998. Stan-
dard Errors are in Parentheses.

Length of subperiod Scale αn Location βn Shape Par. kn

(a) Minimal returns
1 mon.(n = 21, g = 437) 0.823(0.035) −1.902(0.044) −0.197(0.036)
1 qur(n = 63, g = 145) 0.945(0.077) −2.583(0.090) −0.335(0.076)
6 mon.(n = 126, g = 72) 1.147(0.131) −3.141(0.153) −0.330(0.101)
1 year(n = 252, g = 36) 1.542(0.242) −3.761(0.285) −0.322(0.127)

(b) Maximal returns
1 mon.(n = 21, g = 437) 0.931(0.039) 2.184(0.050) −0.168(0.036)
1 qur(n = 63, g = 145) 1.157(0.087) 3.012(0.108) −0.217(0.066)
6 mon.(n = 126, g = 72) 1.292(0.158) 3.471(0.181) −0.349(0.130)
1 year(n = 252, g = 36) 1.624(0.271) 4.475(0.325) −0.264(0.186)
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7.6 AN EXTREME VALUE APPROACH TO VAR

In this section, we discuss an approach to VaR calculation using the extreme value
theory. The approach is similar to that of Longin (1999a, 1999b), who proposed an
eight-step procedure for the same purpose. We divide the discussion into two parts.
The first part is concerned with parameter estimation using the method discussed in
the previous subsections. The second part focuses on VaR calculation by relating the
probabilities of interest associated with different time intervals.

Part I
Assume that there are T observations of an asset return available in the sample
period. We partition the sample period into g nonoverlapping subperiods of length n
such that T = ng. If T = ng + m with 1 ≤ m < n, then we delete the first m
observations from the sample. The extreme value theory discussed in the previous
section enables us to obtain estimates of the location, scale, and shape parameters
βn , αn , and kn for the subperiod minima {rn,i }. Plugging the MLE estimates into the
CDF in Eq. (7.14) with x = (r −βn)/αn , we can obtain the quantile of a given prob-
ability of the generalized extreme value distribution. Because we focus on holding
a long financial position, the lower probability (or left) quantiles are of interest. Let
p∗ be a small probability that indicates the potential loss of a long position and r∗

n be
the p∗th quantile of the subperiod minimum under the limiting generalized extreme
value distribution. Then we have

p∗ =


1 − exp

[
−

(
1 + kn(r∗

n − βn)

αn

)1/kn
]

if kn �= 0

1 − exp

[
− exp

(
r∗

n − βn

αn

)]
if kn = 0,

where it is understood that 1 + kn(r∗
n − βn)/αn > 0 for kn �= 0. Rewriting this

equation as

ln(1 − p∗) =


−

[
1 + kn(r∗

n − βn)

αn

]1/kn

if kn �= 0

− exp

[
r∗

n − βn

αn

]
if kn = 0,

we obtain the quantile as

r∗
n =

βn − αn
kn

{
1 − [− ln(1 − p∗)

]kn
}

if kn �= 0

βn + αn ln[− ln(1 − p∗)] if kn = 0.
(7.24)

In financial applications, the case of kn �= 0 is of major interest.
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Part II
For a given lower (or left tail) probability p∗, the quantile r∗

n of Eq. (7.24) is the
VaR based on the extreme value theory for the subperiod minima. The next step is to
make explicit the relationship between subperiod minima and the observed return rt

series.
Because most asset returns are either serially uncorrelated or have weak serial

correlations, we may use the relationship in Eq. (7.13) and obtain

p∗ = P(rn,i ≤ r∗
n ) = 1 − [1 − P(rt ≤ r∗

n )]n

or, equivalently,

1 − p∗ = [1 − P(rt ≤ r∗
n )]n. (7.25)

This relationship between probabilities allows us to obtain VaR for the original asset
return series rt . More precisely, for a specified small lower probability p, the pth
quantile of rt is r∗

n if the probability p∗ is chosen based on Eq. (7.25), where p =
P(rt ≤ r∗

n ). Consequently, for a given small probability p, the VaR of holding a long
position in the asset underlying the log return rt is

VaR =
βn − αn

kn

{
1 − [−n ln(1 − p)]kn

}
if kn �= 0

βn + αn ln[−n ln(1 − p)] if kn = 0.
(7.26)

Summary
We summarize the approach of applying the traditional extreme value theory to VaR
calculation as follows:

1. Select the length of the subperiod n and obtain subperiod minima {rn,i }, i =
1, . . . , g, where g = T/n.

2. Obtain the maximum likelihood estimates of βn, αn , and kn .

3. Check the adequacy of the fitted extreme value model; see the next section for
some methods of model checking.

4. If the extreme value model is adequate, apply Eq. (7.26) to calculate VaR.

Remark: Since we focus on holding a long financial position and, hence, on
the quantile in the left tail of a return distribution, the quantile is negative. Yet it is
customary in practice to use a positive number for VaR calculation. Thus, in using
Eq. (7.26), one should be aware that the negative sign signifies a loss.

Example 7.6. Consider the daily log return, in percentage, of IBM stock
from July 7, 1962 to December 31, 1998. From Table 7.2, we have α̂n = 0.945,
β̂n = −2.583, and k̂n = −0.335 for n = 63. Therefore, for the left-tail probability
p = 0.01, the corresponding VaR is
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VaR = −2.583 − 0.945

−0.335

{
1 − [−63 ln(1 − 0.01)]−0.335

}
= −3.04969.

Thus, for daily log returns of the stock, the 1% quantile is −3.04969. If one holds a
long position on the stock worth $10 million, then the estimated VaR with probability
1% is $10, 000, 000 × 0.0304969 = $304,969. If the probability is 0.05, then the
corresponding VaR is $166,641.

If we chose n = 21 (i.e., approximately 1 month), then α̂n = 0.823, β̂n = −1.902,
and k̂n = −0.197. The 1% quantile of the extreme value distribution is

VaR = −1.902 − 0.823

−0.197
{1 − [−21 ln(1 − 0.01)]−0.197} = −3.40013.

Therefore, for a long position of $10,000,000, the corresponding 1-day horizon VaR
is $340,013 at the 1% risk level. If the probability is 0.05, then the corresponding
VaR is $184,127. In this particular case, the choice of n = 21 gives higher VaR
values.

It is somewhat surprising to see that the VaR values obtained in Example 7.6
using the extreme value theory are smaller than those of Example 7.3 that uses a
GARCH(1, 1) model. In fact, the VaR values of Example 7.6 are even smaller than
those based on the empirical quantile in Example 7.5. This is due in part to the
choice of probability 0.05. If one chooses probability 0.001 = 0.1% and considers
the same financial position, then we have VaR = $546,641 for the Gaussian AR(2)-
GARCH(1, 1) model and VaR = $666,590 for the extreme value theory with n =
21. Furthermore, the VaR obtained here via the traditional extreme value theory may
not be adequate because the independent assumption of daily log returns is often
rejected by statistical testings. Finally, the use of subperiod minima overlooks the
fact of volatility clustering in the daily log returns. The new approach of extreme
value theory discussed in the next section overcomes these weaknesses.

Remark: As shown by the results of Example 7.6, the VaR calculation based on
the traditional extreme value theory depends on the choice of n, which is the length
of subperiods. For the limiting extreme value distribution to hold, one would prefer
a large n. But a larger n means a smaller g when the sample size T is fixed, where
g is the effective sample size used in estimating the three parameters αn, βn , and kn .
Therefore, some compromise between the choices of n and g is needed. A proper
choice may depend on the returns of the asset under study. We recommend that one
should check the stability of the resulting VaR in applying the traditional extreme
value theory.

7.6.1 Discussion

We have applied various methods of VaR calculation to the daily log returns of IBM
stock for a long position of $10 million. Consider the VaR of the position for the
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next trading day. If the probability is 5%, which means that with probability 0.95 the
loss will be less than or equal to the VaR for the next trading day, then the results
obtained are

1. $302,500 for the RiskMetrics,
2. $287,200 for a Gaussian AR(2)-GARCH(1, 1) model,
3. $283,520 for an AR(2)-GARCH(1, 1) model with a standardized Student-t

distribution with 5 degrees of freedom,
4. $216,030 for using the empirical quantile, and
5. $184,127 for applying the traditional extreme value theory using monthly min-

ima (i.e., subperiod length n = 21).

If the probability is 1%, then the VaR is

1. $426,500 for the RiskMetrics,
2. $409,738 for a Gaussian AR(2)-GARCH(1, 1) model,
3. $475,943 for an AR(2)-GARCH(1, 1) model with a standardized Student-t

distribution with 5 degrees of freedom,
4. $365,709 for using the empirical quantile, and
5. $340,013 for applying the traditional extreme value theory using monthly min-

ima (i.e., subperiod length n = 21).

If the probability is 0.1%, then the VaR becomes

1. $566,443 for the RiskMetrics,
2. $546,641 for a Gaussian AR(2)-GARCH(1, 1) model,
3. $836,341 for an AR(2)-GARCH(1, 1) model with a standardized Student-t

distribution with 5 degrees of freedom,
4. $780,712 for using the empirical quantile, and
5. $666,590 for applying the traditional extreme value theory using monthly min-

ima (i.e., subperiod length n = 21).

There are substantial differences among different approaches. This is not surprising
because there exists substantial uncertainty in estimating tail behavior of a statistical
distribution. Since there is no true VaR available to compare the accuracy of different
approaches, we recommend that one applies several methods to gain insight into the
range of VaR.

The choice of tail probability also plays an important role in VaR calculation. For
the daily IBM stock returns, the sample size is 9190 so that the empirical quantiles
of 5% and 1% are decent estimates of the quantiles of the return distribution. In this
case, we can treat the results based on empirical quantiles as conservative estimates
of the true VaR (i.e., lower bounds). In this view, the approach based on the traditional
extreme value theory seems to underestimate the VaR for the daily log returns of IBM
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stock. The conditional approach of extreme value theory discussed in the next section
overcomes this weakness.

When the tail probability is small (e.g., 0.1%), the empirical quantile is a less
reliable estimate of the true quantile. The VaR based on empirical quantiles can no
longer serve as a lower bound of the true VaR. Finally, the earlier results show clearly
the effects of using a heavy-tail distribution in VaR calculation when the tail prob-
ability is small. The VaR based on either a Student-t distribution with 5 degrees of
freedom or the extreme value distribution is greater than that based on the normal
assumption when the probability is 0.1%.

7.6.2 Multiperiod VaR

The square root of time rule of the RiskMetrics methodology becomes a special case
under the extreme value theory. The proper relationship between �-day and 1-day
horizons is

VaR(�) = �1/αVaR = �−kVaR,

where α is the tail index and k is the shape parameter of the extreme value distri-
bution; see Danielsson and de Vries (1997a). This relationship is referred to as the
α-root of time rule. Here α = 1

k , not the scale parameter αn .
For illustration, consider the daily log returns of IBM stock in Example 7.6. If we

use p = 0.05 and the results of n = 21, then for a 30-day horizon we have

VaR(30) = (30)0.335VaR = 3.125 × $184,127 = $575,397.

Because �0.335 < �0.5, the α-root of time rule produces lower �-day horizon VaR
than does the square root of time rule.

7.6.3 VaR for a Short Position

In this subsection, we give the formulas of VaR calculation for holding short posi-
tions. Here the quantity of interest is the subperiod maximum and the limiting
extreme value distribution becomes

F∗(r) =


exp

{
−

[
1 − kn(r − βn)

αn

]1/kn
}

if kn �= 0

exp

[
− exp

(
r − βn

αn

)]
if kn = 0,

(7.27)

where r denotes a value of the subperiod maximum and it is understood that 1 −
kn(r − βn)/αn > 0 for kn �= 0.
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Following similar procedures as those of long positions, we obtain the (1 − p)th
quantile of the return rt as

VaR =
βn + αn

kn

{
1 − [−n ln(1 − p)]kn

}
if kn �= 0

βn + αn ln[−n ln(1 − p)] if kn = 0,
(7.28)

where p is a small probability denoting the chance of loss for holding a short posi-
tion.

7.7 A NEW APPROACH BASED ON THE EXTREME VALUE THEORY

The aforementioned approach to VaR calculation using the extreme value theory
encounters some difficulties. First, the choice of subperiod length n is not clearly
defined. Second, the approach is unconditional and, hence, does not take into con-
sideration effects of other explanatory variables. To overcome these difficulties, a
modern approach to extreme value theory has been proposed in the statistical lit-
erature; see Davison and Smith (1990) and Smith (1989). Instead of focusing on
the extremes (maximum or minimum), the new approach focuses on exceedances of
the measurement over some high threshold and the times at which the exceedances
occur. For instance, consider the daily log returns rt of IBM stock used in this chap-
ter and a long position on the stock. Let η be a prespecified high threshold. We may
choose η = −2.5%. Suppose that the i th exceedance occurs at day ti (i.e., rti ≤ η).
Then the new approach focuses on the data (ti , rti −η). Here rti −η is the exceedance
over the threshold η and ti is the time at which the i th exceedance occurs. Similarly,
for a short position, we may choose η = 2% and focus on the data (ti , rti − η) for
which rti ≥ η.

In practice, the occurrence times {ti } provide useful information about the inten-
sity of the occurrence of important “rare events” (e.g., less than the threshold η for
a long position). A cluster of ti indicates a period of large market declines. The
exceeding amount (or exceedance) rti − η is also of importance as it provides the
actual quantity of interest.

Based on the prior introduction, the new approach does not require the choice
of a subperiod length n, but it requires the specification of threshold η. Differ-
ent choices of the threshold η lead to different estimates of the shape parameter k
(and hence the tail index −1/k). In the literature, some researchers believe that the
choice of η is a statistical problem as well as a financial one, and it cannot be deter-
mined purely based on the statistical theory. For example, different financial institu-
tions (or investors) have different risk tolerances. As such, they may select different
thresholds even for an identical financial position. For the daily log returns of IBM
stock considered in this chapter, the calculated VaR is not sensitive to the choice
of η.

The choice of threshold η also depends on the observed log returns. For a stable
return series, η = −2.5% may fare well for a long position. For a volatile return
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series (e.g., daily returns of a dot-com stock), η may be as low as −10%. Limited
experience shows that η can be chosen so that the number of exceedances is suffi-
ciently large (e.g., about 5% of the sample). For a more formal study on the choice
of η, see Danielsson and de Vries (1997b).

7.7.1 Statistical Theory

Again consider the log return rt of an asset. Suppose that the i th exceedance occurs
at ti . Focusing on the exceedance rt − η and exceeding time ti results in a funda-
mental change in statistical thinking. Instead of using the marginal distribution (e.g.,
the limiting distribution of the minimum or maximum), the new approach employs a
conditional distribution to handle the magnitude of exceedance given that the mea-
surement exceeds a threshold. The chance of exceeding the threshold is governed by
a probability law. In other words, the new approach considers the conditional dis-
tribution of x = rt − η given rt ≤ η for a long position. Occurrence of the event
{rt ≤ η} follows a point process (e.g., a Poisson process). See Section 6.9 for the def-
inition of a Poisson process. In particular, if the intensity parameter λ of the process
is time-invariant, then the Poisson process is homogeneous. If λ is time-variant, then
the process is nonhomogeneous. The concept of Poisson process can be generalized
to the multivariate case.

For ease in presentation, in what follows we use a positive threshold and the
right-hand side of a return distribution to discuss the statistical theory behind the
new approach of extreme value theory. This corresponds to holding a short financial
position. However, the theory applies equally well to holding a long position if it is
applied to the rc

t series, where rc
t = −rt . This is easily seen because rc

t ≥ η for a
positive threshold is equivalent to rt ≤ −η, where −η becomes a negative threshold.

The basic theory of the new approach is to consider the conditional distribution
of r = x + η given r > η for the limiting distribution of the maximum given in
Eq. (7.27). Since there is no need to choose the subperiod length n, we do not use it
as a subscript of the parameters. Then the conditional distribution of r ≤ x +η given
r > η is

Pr(r ≤ x + η | r > η) = Pr(η ≤ r ≤ x + η)

Pr(r > η)
= Pr(r ≤ x + η)− Pr(r ≤ η)

1 − Pr(r ≤ η)
.

(7.29)

Using the CDF F∗(.) of Eq. (7.27) and the approximation e−y ≈ 1 − y and after
some algebra, we obtain that

Pr(r ≤ x + η | r > η) = F∗(x + η)− F∗(η)
1 − F∗(η)

=
exp

{
−

[
1 − k(x+η−β)

α

]1/k
}

− exp

{
−

[
1 − k(η−β)

α

]1/k
}

1 − exp

{
−

[
1 − k(η−β)

α

]1/k
}
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≈ 1 −
[

1 − kx

α − k(η − β)

]1/k

, (7.30)

where x > 0 and 1 − k(η − β)/α > 0. As is seen later, this approximation makes
explicit the connection of the new approach to the traditional extreme value theory.
The case of k = 0 is taken as the limit of k → 0 so that

Pr(r ≤ x + η | r > η) ≈ 1 − exp(−x/α).

7.7.2 A New Approach

Using the statistical result in Eq. (7.30) and considering jointly the exceedances and
exceeding times, Smith (1989) proposes a two-dimensional Poisson process to model
(ti , rti ). This approach was used by Tsay (1999) to study VaR in risk management.
We follow the same approach.

Assume that the baseline time interval is T , which is typically a year. In the United
States, T = 252 is used as there are typically 252 trading days in a year. Let t be
the time interval of the data points (e.g., daily), and denote the data span by t =
1, 2, . . . , N , where N is the total number of data points. For a given threshold η,
the exceeding times over the threshold are denoted by {ti , i = 1, . . . , Nη} and the
observed log return at ti is rti . Consequently, we focus on modeling {(ti , rti )} for
i = 1, . . . , Nη, where Nη depends on the threshold η.

The new approach to applying the extreme value theory is to postulate that
the exceeding times and the associated returns [i.e., (ti , rti )] jointly form a two-
dimensional Poisson process with intensity measure given by

�[(T2, T1)× (r,∞)] = T2 − T1

T
S(r; k, α, β), (7.31)

where

S(r; k, α, β) =
[

1 − k(r − β)

α

]1/k

+
,

0 ≤ T1 ≤ T2 ≤ N , r > η, α > 0, β, and k are parameters, and the notation [x]+
is defined as [x]+ = max(x, 0). This intensity measure says that the occurrence of
exceeding the threshold is proportional to the length of the time interval [T1, T2]
and the probability is governed by a survival function similar to the exponent of the
CDF F∗(r) in Eq. (7.27). A survival function of a random variable X is defined as
S(x) = Pr(X > x) = 1 − Pr(X ≤ x) = 1 − CDF(x). When k = 0, the intensity
measure is taken as the limit of k → 0—that is,

�[(T2, T1)× (r,∞)] = T2 − T1

T
exp

[−(r − β)

α

]
.
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In Eq. (7.31), the length of time interval is measured with respect to the baseline
interval T .

The idea of using the intensity measure in Eq. (7.31) becomes clear when one
considers its implied conditional probability of r = x + η given r > η over the time
interval [0, T ], where x > 0,

�[(0, T )× (x + η,∞)]
�[(0, T )× (η,∞)] =

[
1 − k(x + η − β)/α

1 − k(η − β)/α

]1/k

=
[

1 − kx

α − k(η − β)

]1/k

,

which is precisely the survival function of the conditional distribution given in
Eq. (7.30). This survival function is obtained from the extreme limiting distribution
for maximum in Eq. (7.27). We use survival function here because it denotes the
probability of exceedance.

The relationship between the limiting extreme value distribution in Eq. (7.27) and
the intensity measure in Eq. (7.31) directly connects the new approach of extreme
value theory to the traditional one.

Mathematically, the intensity measure in Eq. (7.31) can be written as an integral
of an intensity function:

�[(T2, T1)× (r,∞)] =
∫ T2

T1

∫ ∞

r
λ(t, z; k, α, β) dt dz,

where the intensity function λ(t, z; k, α, β) is defined as

λ(t, z; k, α, β) = 1

T
g(z; k, α, β) (7.32)

where

g(z; k, α, β) =


1

α

[
1 − k(z − β)

α

]1/k−1

if k �= 0

1

α
exp

[−(z − β)

α

]
if k = 0.

Using the results of a Poisson process, we can write down the likelihood function
for the observed exceeding times and their corresponding returns {(ti , rti )} over the
two-dimensional space [0, N ] × (η,∞) as

L(k, α, β) =
 Nη∏

i=1

1

T
g(rti ; k, α, β)

 × exp

[
− N

T
S(η; k, α, β)

]
. (7.33)

The parameters k, α, β can then be estimated by maximizing the logarithm of this
likelihood function. Since the scale parameter α is nonnegative, we use ln(α) in the
estimation.



288 VALUE AT RISK

Table 7.3. Estimation Results of a Two-Dimensional Homogeneous Poisson Model
for the Daily Negative Log Returns of IBM Stock From July 3, 1962 to Decem-
ber 31, 1998. The Baseline Time Interval is 252 (i.e., One Year). The Numbers in
Parentheses Are Standard Errors, Where “Thr.” and “Exc.” Stand For Threshold
and the Number of Exceedings.

Thr. Exc. Shape Par. k Log(Scale) ln(α) Location β

(a) Original log returns
3.0% 175 −0.30697(0.09015) 0.30699(0.12380) 4.69204(0.19058)
2.5% 310 −0.26418(0.06501) 0.31529(0.11277) 4.74062(0.18041)
2.0% 554 −0.18751(0.04394) 0.27655(0.09867) 4.81003(0.17209)

(b) Removing the sample mean
3.0% 184 −0.30516(0.08824) 0.30807(0.12395) 4.73804(0.19151)
2.5% 334 −0.28179(0.06737) 0.31968(0.12065) 4.76808(0.18533)
2.0% 590 −0.19260(0.04357) 0.27917(0.09913) 4.84859(0.17255)

Example 7.7. Consider again the daily log returns of IBM stock from July 3,
1962 to December 31, 1998. There are 9190 daily returns. Table 7.3 gives some
estimation results of the parameters k, α, β for three choices of the threshold when
the negative series {−rt } is used. We use the negative series {−rt }, instead of {rt },
because we focus on holding a long financial position. The table also shows the num-
ber of exceeding times for a given threshold. It is seen that the chance of dropping
2.5% or more in a day for IBM stock occurred with probability 310/9190 ≈ 3.4%.
Because the sample mean of IBM stock returns is not zero, we also consider the
case when the sample mean is removed from the original daily log returns. From the
table, removing the sample mean has little impact on the parameter estimates. These
parameter estimates are used next to calculate VaR, keeping in mind that in a real
application one needs to check carefully the adequacy of a fitted Poisson model. We
discuss methods of model checking in the next subsection.

7.7.3 VaR Calculation Based on the New Approach

As shown in Eq. (7.30), the two-dimensional Poisson process model used, which
employs the intensity measure in Eq. (7.31), has the same parameters as those of the
extreme value distribution in Eq. (7.27). Therefore, one can use the same formula as
that of the Eq. (7.28) to calculate VaR of the new approach. More specifically, for a
given upper tail probability p, the (1 − p)th quantile of the log return rt is

VaR =
{
β + α

k

{
1 − [−T ln(1 − p)]k} if k �= 0

β + α ln[−T ln(1 − p)] if k = 0,
(7.34)

where T is the baseline time interval used in estimation. Typically, T = 252 in the
United States for the approximate number of trading days in a year.
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Example 7.8. Consider again the case of holding a long position of IBM
stock valued at $10 million. We use the estimation results of Table 7.3 to calculate
1-day horizon VaR for the tail probabilities of 0.05 and 0.01.

• Case I: Use the original daily log returns. The three choices of threshold η result
in the following VaR values:

1. η = 3.0%: VaR(5%) = $228,239, VaR(1%) = $359,303.
2. η = 2.5%: VaR(5%) = $219,106, VaR(1%) = $361,119.
3. η = 2.0%: VaR(5%) = $212,981, VaR(1%) = $368,552.

• Case II: The sample mean of the daily log returns is removed. The three choices
of threshold η result in the VaR values:

1. η = 3.0%: VaR(5%) = $232,094, VaR(1%) = $363,697.
2. η = 2.5%: VaR(5%) = $225,782, VaR(1%) = $364,254.
3. η = 2.0%: VaR(5%) = $217,740, VaR(1%) = $372,372.

As expected, removing the sample mean, which is positive, increases slightly the
VaR. However, the VaR is rather stable among the three threshold values used. In
practice, we recommend that one removes the sample mean first before applying this
new approach to VaR calculation.

Discussion: Compared with the VaR of Example 7.6 that uses the traditional
extreme value theory, the new approach provides a more stable VaR calculation. The
traditional approach is rather sensitive to the choice of the subperiod length n.

7.7.4 Use of Explanatory Variables

The two-dimensional Poisson process model discussed earlier is homogeneous
because the three parameters k, α, and β are constant over time. In practice, such
a model may not be adequate. Furthermore, some explanatory variables are often
available that may influence the behavior of the log returns rt . A nice feature of
the new extreme value theory approach to VaR calculation is that it can easily take
explanatory variables into consideration. We discuss such a framework in this sub-
section. In addition, we also discuss methods that can be used to check the adequacy
of a fitted two-dimensional Poisson process model.

Suppose that xt = (x1t , . . . , xvt )
′ is a vector of v explanatory variables that are

available prior to time t . For asset returns, the volatility σ 2
t of rt discussed in Chap-

ter 3 is an example of explanatory variables. Another example of explanatory vari-
ables in the U.S. equity markets is an indicator variable denoting the meetings of
Federal Open Market Committee. A simple way to make use of explanatory variables
is to postulate that the three parameters k, α, and β are time-varying and are linear
functions of the explanatory variables. Specifically, when explanatory variables xt
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are available, we assume that

kt = γ0 + γ1x1t + · · · + γvxvt ≡ γ0 + γ′xt

ln(αt ) = δ0 + δ1x1t + · · · + δvxvt ≡ δ0 + δ′xt (7.35)

βt = θ0 + θ1x1t + · · · + θvxvt ≡ θ0 + θ′xt .

If γ = 0, then the shape parameter kt = γ0, which is time-invariant. Thus, testing the
significance of γ can provide information about the contribution of the explanatory
variables to the shape parameter. Similar methods apply to the scale and location
parameters. In Eq. (7.35), we use the same explanatory variables for all the three
parameters kt , ln(αt ), and βt . In an application, different explanatory variables may
be used for different parameters.

When the three parameters of the extreme value distribution are time-varying, we
have an inhomogeneous Poisson process. The intensity measure becomes

�[(T1, T2)× (r,∞)] = T2 − T1

T

(
1 − kt (r − βt )

αt

)1/kt

+
, r > η. (7.36)

The likelihood function of the exceeding times and returns {(ti , rti )} becomes

L =
 Nη∏

i=1

1

T
g(rti ; kti , αti , βti )

 × exp

[
− 1

T

∫ N

0
S(η; kt , αt , βt )dt

]
,

which reduces to

L =
 Nη∏

i=1

1

T
g(rti ; kti , αti , βti )

 × exp

[
− 1

T

N∑
t=1

S(η; kt , αt , βt )

]
(7.37)

if one assumes that the parameters kt , αt , and βt are constant within each trading day,
where g(z; kt , αt , βt ) and S(η; kt , αt , βt ) are given in Eqs. (7.32) and (7.31), respec-
tively. For given observations {rt , xt | t = 1, . . . , N }, the baseline time interval T ,
and the threshold η, the parameters in Eq. (7.35) can be estimated by maximizing the
logarithm of the likelihood function in Eq. (7.37). Again we use ln(αt ) to satisfy the
positive constraint of αt .

Remark: The parameterization in Eq. (7.35) is similar to that of the volatility
models of Chapter 3 in the sense that the three parameters are exact functions of the
available information at time t . Other functions can be used if necessary.

7.7.5 Model Checking

Checking an entertained two-dimensional Poisson process model for exceedance
times and excesses involves examining three key features of the model. The first
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feature is to verify the adequacy of the exceedance rate, the second feature is to
examine the distribution of exceedances, and the final feature is to check the inde-
pendence assumption of the model. We discuss briefly some statistics that are useful
for checking these three features. These statistics are based on some basic statistical
theory concerning distributions and stochastic processes.

Exceedance Rate
A fundamental property of univariate Poisson processes is that the time durations
between two consecutive events are independent and exponentially distributed. To
exploit a similar property for checking a two-dimensional process model, Smith
and Shively (1995) propose to examine the time durations between consecutive
exceedances. If the two-dimensional Poisson process model is appropriate for the
exceedance times and excesses, the time duration between the i th and (i − 1)th
exceedances should follow an exponential distribution. More specifically, letting
t0 = 0, we expect that

zti =
∫ ti

ti−1

1

T
g(η; ks, αs , βs)ds, i = 1, 2, . . .

are independent and identically distributed (iid) as a standard exponential distribu-
tion. Because daily returns are discrete-time observations, we employ the time dura-
tions

zti = 1

T

ti∑
t=ti−1+1

S(η; kt , αt , βt ) (7.38)

and use the quantile-to-quantile (QQ) plot to check the validity of the iid standard
exponential distribution. If the model is adequate, the QQ-plot should show a straight
line through the origin with unit slope.

Distribution of Excesses
Under the two-dimensional Poisson process model considered, the conditional dis-
tribution of the excess xt = rt − η over the threshold η is a generalized Pareto dis-
tribution (GPD) with shape parameter kt and scale parameter ψt = αt − kt (η − βt ).
Therefore, we can make use of the relationship between a standard exponential dis-
tribution and GPD, and define

wti =


−1

kti
ln

(
1 − kti

rti − η

ψti

)
+

if kti �= 0

rti − η

ψti
if kti = 0.

(7.39)

If the model is adequate, {wti } are independent and exponentially distributed with
mean 1; see also Smith (1999). We can then apply the QQ-plot to check the validity
of the GPD assumption for excesses.
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Independence
A simple way to check the independence assumption, after adjusting for the effects
of explanatory variables, is to examine the sample autocorrelation functions of zti
and wti . Under the independence assumption, we expect zero serial correlations for
both zti and wti .

7.7.6 An Illustration

In this subsection, we apply a two-dimensional inhomogeneous Poisson process
model to the daily log returns, in percentages, of IBM stock from July 3, 1962 to
December 31, 1998. We focus on holding a long position of $10 million. The anal-
ysis enables us to compare the results with those obtained before by using other
approaches to calculating VaR.

We begin by pointing out that the two-dimensional homogeneous model of Exam-
ple 7.7 needs further refinements because the fitted model fails to pass the model
checking statistics of the previous subsection. Figures 7.5(a) and (b) show the auto-
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Figure 7.5. Sample autocorrelation functions of the z and w measures for two-dimensional
Poisson models. (a) and (b) are for the homogeneous model, and (c) and (d) are for the inho-
mogeneous model. The data are daily mean-corrected log returns, in percentages, of IBM
stock from July 3, 1962 to December 31, 1998, and the threshold is 2.5%. A long financial
position is used.
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Figure 7.6. Quantile-to-quantile plot of the z and w measures for two-dimensional Poisson
models. (a) and (b) are for the homogeneous model, and (c) and (d) are for the inhomogeneous
model. The data are daily mean-corrected log returns, in percentages, of IBM stock from
July 3, 1962 to December 31, 1998, and the threshold is 2.5%. A long financial position is
used.

correlation functions of the statistics zti and wti , defined in Eqs. (7.38) and (7.39),
of the homogeneous model when the threshold is η = 2.5%. The horizontal lines
in the plots denote asymptotic limits of two standard errors. It is seen that both zti
and wti series have some significant serial correlations. Figures 7.6(a) and (b) show
the QQ-plots of zti and wti series. The straight line in each plot is the theoretical
line, which passes through the origin and has a unit slope under the assumption of a
standard exponential distribution. The QQ-plot of zti shows some discrepancy.

To refine the model, we use the mean-corrected log return series

ro
t = rt − r̄ , r̄ = 1

9190

9190∑
t=1

rt ,

where rt is the daily log return in percentages, and employ the following explanatory
variables:
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1. x1t : an indicator variable for October, November, and December. That is, x1t =
1 if t is in October, November, or December. This variable is chosen to take
care of the fourth-quarter effect (or year-end effect), if any, on the daily IBM
stock returns.

2. x2t : an indicator variable for the behavior of the previous trading day. Specif-
ically, x2t = 1 if and only if the log return ro

t−1 ≤ −2.5%. Since we focus on
holding a long position with threshold 2.5%, an exceedance occurs when the
daily price drops over 2.5%. Therefore, x2t is used to capture the possibility
of panic selling when the price of IBM stock dropped 2.5% or more on the
previous trading day.

3. x3t : a qualitative measurement of volatility, which is the number of days
between t − 1 and t − 5 (inclusive) that has a log return with magnitude
exceeding the threshold. In our case, x3t is the number of ro

t−i satisfying
| ro

t−i | ≥ 2.5% for i = 1, . . . , 5.

4. x4t : an annual trend defined as x4t = (year of time t −1961)/38. This variable
is used to detect any trend in the behavior of extreme returns of IBM stock.

5. x5t : a volatility series based on a Gaussian GARCH(1, 1) model for the mean-
corrected series ro

t . Specifically, x5t = σt , where σ 2
t is the conditional variance

of the GARCH(1, 1) model

ro
t = at , at = σtεt , εt ∼ N (0, 1)

σ 2
t = 0.04565 + 0.0807a2

t−1 + 0.9031σ 2
t−1.

These five explanatory variables are all available at time t − 1. We use two volatility
measures (x3t and x5t ) to study the effect of market volatility on VaR. As shown in
Example 7.3 by the fitted AR(2)-GARCH(1, 1) model, the serial correlations in rt

are weak so that we do not entertain any ARMA model for the mean equation.
Using the prior five explanatory variables and deleting insignificant parameters,

we obtain the estimation results shown in Table 7.4. Figures 7.5(c) and (d) and Fig-
ures 7.6(c) and (d) show the model checking statistics for the fitted two-dimensional
inhomogeneous Poisson process model when the threshold is η = 2.5%. All autocor-
relation functions of zti and wti are within the asymptotic two standard-error limits.
The QQ-plots also show marked improvements as they indicate no model inade-
quacy. Based on these checking results, the inhomogeneous model seems adequate.

Consider the case of threshold 2.5%. The estimation results show the following:

1. All three parameters of the intensity function depend significantly on the
annual time trend. In particular, the shape parameter has a negative annual
trend, indicating that the log returns of IBM stock are moving farther away
from normality as time passes. Both the location and scale parameters increase
over time.

2. Indicators for the fourth quarter, x1t , and for panic selling, x2t , are not signifi-
cant for all three parameters.
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Table 7.4. Estimation Results of a Two-Dimensional Inhomogeneous
Poisson Process Model for Daily Log Returns, in Percentages, of IBM
Stock From July 3, 1962 to December 31, 1998. Four Explanatory
Variables Defined in the Text Are Used. The Model is for Holding a
Long Position on IBM Stock. The Sample Mean of the Log Returns is
Removed From the Data.

Parameter Constant Coef. of x3t Coef. of x4t Coef. of x5t

(a) Threshold 2.5% with 334 exceedances
βt 0.3202 1.4772 2.1991

(Std.err) (0.3387) (0.3222) (0.2450)
ln(αt ) −0.8119 0.3305 1.0324

(Std.err) (0.1798) (0.0826) (0.2619)
kt −0.1805 −0.2118 −0.3551 0.2602

(Std.err) (0.1290) (0.0580) (0.1503) (0.0461)

(b) Threshold 3.0% with 184 exceedances
βt 1.1569 2.1918

(Std.err) (0.4082) (0.2909)
ln(αt ) −0.0316 0.3336

(Std.err) (0.1201) (0.0861)
kt −0.6008 −0.2480 0.3175

(Std.err) (0.1454) (0.0731) (0.0685)

3. The location and shape parameters are positively affected by the volatility of
the GARCH(1, 1) model; see the coefficients of x5t . This is understandable
because the variability of log returns increases when the volatility is high. Con-
sequently, the dependence of log returns on the tail index is reduced.

4. The scale and shape parameters depend significantly on the qualitative measure
of volatility. The signs of the estimates are also plausible.

The explanatory variables for December 31, 1998 assumed the values x3,9190 = 0,
x4,9190 = 0.9737, and x5,9190 = 1.9766. Using these values and the fitted model in
Table 7.4, we obtain

k9190 = −0.01195, ln(α9190) = 0.19331, β9190 = 6.105.

Assume that the tail probability is 0.05. The VaR quantile shown in Eq. (7.34) gives
VaR = 3.03756%. Consequently, for a long position of $10 million, we have

VaR = $10,000,000 × 0.0303756 = $303,756.

If the tail probability is 0.01, the VaR is $497,425. The 5% VaR is slightly larger
than that of Example 7.3, which uses a Gaussian AR(2)-GARCH(1, 1) model. The
1% VaR is larger than that of Case I of Example 7.3. Again, as expected, the effect of
extreme values (i.e., heavy tails) on VaR is more pronounced when the tail probability
used is small.
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An advantage of using explanatory variables is that the parameters are adaptive to
the change in market conditions. For example, the explanatory variables for Decem-
ber 30, 1998 assumed the values x3,9189 = 1, x4,9189 = 0.9737, and x5,9189 =
1.8757. In this case, we have

k9189 = −0.2500, ln(α9189) = 0.52385, β9189 = 5.8834.

The 95% quantile (i.e., the tail probability is 5%) then becomes 2.69139%. Conse-
quently, the VaR is

VaR = $10,000,000 × 0.0269139 = $269,139.

If the tail probability is 0.01, then VaR becomes $448,323. Based on this example, the
homogeneous Poisson model shown in Example 7.8 seems to underestimate the VaR.

EXERCISES

1. Consider the daily log returns of GE stock from July 3, 1962 to December 31,
1999. The data can be obtained from CRSP or the file “d-geln.dat.” Suppose that
you hold a long position on the stock valued at $1 million. Use the tail probability
0.05. Compute the value at risk of your position for 1-day horizon and 15-day
horizon using the following methods:
(a) The RiskMetrics method.
(b) A Gaussian ARMA-GARCH model.
(c) An ARMA-GARCH model with a Student-t distribution. You should also

estimate the degrees of freedom.

(d) The traditional extreme value theory with subperiod length n = 21.

2. The file “d-csco9199.dat” contains the daily log returns of Cisco Systems stock
from 1991 to 1999 with 2275 observations. Suppose that you hold a long position
of Cisco stock valued at $1 million. Compute the Value at Risk of your position
for the next trading day using probability p = 0.01.
(a) Use the RiskMetrics method.
(b) Use a GARCH model with a conditional Gaussian distribution.
(c) Use a GARCH model with a Student-t distribution. You may also estimate

the degrees of freedom.
(d) Use the unconditional sample quantile.
(e) Use a two-dimensional homogeneous Poisson process with threshold 2%.

That is, focusing on the exceeding times and exceedances that the daily stock
price drops 2% or more. Check the fitted model.

(f) Use a two-dimensional nonhomogeneous Poisson process with threshold 2%.
The explanatory variables are (1) an annual time trend, (2) a dummy variable
for October, November, and December, and (3) a fitted volatility based on
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a Gaussian GARCH(1, 1) model. Perform a diagnostic check on the fitted
model.

(g) Repeat the prior two-dimensional nonhomogeneous Poisson process with
threshold 2.5% or 3%. Comment on the selection of threshold.

3. Use Hill’s estimator and the data “d-csco9199.dat” to estimate the tail index for
daily stock returns of Cisco Systems.

4. The file “d-hwp3dx8099.dat” contains the daily log returns of Hewlett-Packard,
CRSP value-weighted index, equal-weighted index, and S&P 500 index from
1980 to 1999. All returns are in percentages and include dividend distributions.
Assume that the tail probability of interest is 0.01. Calculate Value at Risk for the
following financial positions for the first trading day of year 2000.
(a) Long on Hewlett-Packard stock of $1 million and S&P 500 index of $1 mil-

lion, using RiskMetrics. The α coefficient of the IGARCH(1, 1) model for
each series should be estimated.

(b) The same position as part (a), but using a univariate ARMA-GARCH model
for each return series.

(c) A long position on Hewlett-Packard stock of $1 million using a two-
dimensional nonhomogeneous Poisson model with the following explanatory
variables: (1) an annual time trend, (2) a fitted volatility based on a Gaussian
GARCH model for Hewlett-Packard stock, (3) a fitted volatility based on a
Gaussian GARCH model for S&P 500 index returns, and (4) a fitted volatil-
ity based on a Gaussian GARCH model for the value-weighted index return.
Perform a diagnostic check for the fitted models. Are the market volatility
as measured by S&P 500 index and value-weighted index returns helpful in
determining the tail behavior of stock returns of Hewlett-Packard? You may
choose several thresholds.
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C H A P T E R 8

Multivariate Time Series Analysis
and Its Applications

Economic globalization and internet communication have accelerated the integration
of world financial markets in recent years. Price movements in one market can spread
easily and instantly to another market. For this reason, financial markets are more
dependent on each other than ever before, and one must consider them jointly to
better understand the dynamic structure of the global finance. One market may lead
the other market under some circumstances, yet the relationship may be reversed
under other circumstances. Consequently, knowing how the markets are interrelated
is of great importance in finance. Similarly, for an investor or a financial institution
holding multiple assets, the dynamic relationships between returns of the assets play
an important role in decision making. In this and the next chapters, we introduce
econometric models and methods useful for studying jointly multiple return series.
In the statistical literature, these models and methods belong to vector or multivariate
time series analysis.

A multivariate time series consists of multiple single series referred to as com-
ponents. As such, concepts of vector and matrix are important in multivariate time
series analysis. We use boldfaced notation to indicate vectors and matrixes. If neces-
sary, readers may consult Appendix A of the chapter for some basic operations and
properties of vector and matrix. Appendix B provides some results of multivariate
normal distribution, which is widely used in multivariate statistical analysis (e.g.,
Johnson and Wichern, 1998).

Let rt = (r1t , r2t , . . . , rkt )
′ be the log returns of k assets at time t , where

a′ denotes the transpose of a. For example, an investor holding stocks of IBM,
Microsoft, Exxon Mobil, General Motors, and Wal-Mart Stores may consider the
five-dimensional daily log returns of these companies. Here r1t denotes the daily log
return of IBM stock, r2t is that of Microsoft, and so on. As a second example, an
investor who is interested in global investment may consider the return series of the
S&P 500 index of United States, the FTSE 100 index of United Kingdom, and the
Nikkei 225 index of Japan. Here the series is three-dimensional, with r1t denoting
the return of S&P 500 index, r2t the return of FTSE 100 index, and r3t the return of
Nikkei 225. The goal of this chapter is to study econometric models for analyzing

299

Analysis of Financial Time Series. Ruey S. Tsay
Copyright  2002 John Wiley & Sons, Inc.

ISBN: 0-471-41544-8



300 VECTOR TIME SERIES

the multivariate process rt . The chapter also discusses methods that can simplify the
dynamic structure or reduce the dimension of rt .

Many of the models and methods discussed in the previous chapters can be gen-
eralized directly to the multivariate case. But there are situations in which the gen-
eralization requires some attention. In some situations, one needs new models and
methods to handle the complicated relationships between multiple returns. We also
discuss methods that search for common factors affecting the returns of different
assets. Our discussion emphasizes intuition and applications. For statistical theory
of multivariate time series analysis, readers are referred to Lütkepohl (1991) and
Reinsel (1993).

8.1 WEAK STATIONARITY AND CROSS-CORRELATION MATRIXES

Consider a k-dimensional time series rt = (r1t , . . . , rkt )
′. The series rt is weakly

stationary if its first and second moments are time-invariant. In particular, the mean
vector and covariance matrix of a weakly stationary series are constant over time.
Unless stated explicitly to the contrary, we assume that the return series of financial
assets are weakly stationary.

For a weakly stationary time series rt , we define its mean vector and covariance
matrix as

µ = E(rt ), Γ0 = E[(rt − µt )(rt − µt )
′], (8.1)

where the expectation is taken element by element over the joint distribution of rt .
The mean µ is a k-dimensional vector consisting of the unconditional expectations
of the components of rt . The covariance matrix Γ0 is a k ×k matrix. The i th diagonal
element of Γ0 is the variance of rit , whereas the (i, j)th element of Γ0 is the covari-
ance between rit and r jt . We write µ = (µ1, . . . , µk)

′ and Γ0 = [�i j (0)] when the
elements are needed.

8.1.1 Cross-Correlation Matrixes

Let D be a k × k diagonal matrix consisting of the standard deviations of rit for
i = 1, . . . , k. In other words, D = diag{√�11(0), . . . ,

√
�kk(0)}. The concurrent, or

lag-zero, cross-correlation matrix of rt is defined as

ρ0 ≡ [ρi j (0)] = D−1Γ0D−1.

More specifically, the (i, j)th element of ρ0 is

ρi j (0) = �i j (0)√
�i i (0)� j j (0)

= Cov(rit , r jt )

std(rit )std(r jt )
,

which is the correlation coefficient between rit and r jt . In a time series analysis,
such a correlation coefficient is referred to as a concurrent, or contemporaneous,
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correlation coefficient because it is the correlation of the two series at time t . It is
easy to see that ρi j (0) = ρ j i (0), −1 ≤ ρi j (0) ≤ 1, and ρi i (0) = 1 for 1 ≤ i, j ≤ k.
Thus, ρ(0) is a symmetric matrix with unit diagonal elements.

An important topic in multivariate time series analysis is the lead-lag relationships
between component series. To this end, the cross-correlation matrixes are used to
measure the strength of linear dependence between time series. The lag-� cross-
covariance matrix of rt is defined as

Γ� ≡ [�i j (�)] = E[(rt − µ)(rt−� − µ)′], (8.2)

where µ is the mean vector of rt . Therefore, the (i, j)th element of Γ� is the covari-
ance between rit and r j,t−�. For a weakly stationary series, the cross-covariance
matrix Γ� is a function of �, not the time index t .

The lag-� cross-correlation matrix (CCM) of rt is defined as

ρ� ≡ [ρi j (�)] = D−1Γ�D−1, (8.3)

where, as before, D is the diagonal matrix of standard deviations of the individual
series rit . From the definition,

ρi j (�) = �i j (�)√
�i i (0)� j j (0)

= Cov(rit , r j,t−�)
std(rit )std(r jt )

, (8.4)

which is the correlation coefficient between rit and r j,t−�. When � > 0, this cor-
relation coefficient measures the linear dependence of rit on r j,t−�, which occurred
prior to time t . Consequently, if ρi j (�) �= 0 and � > 0, we say that the series r jt

leads the series rit at lag �. Similarly, ρ j i (�) measures the linear dependence of r jt

and ri,t−�, and we say that the series rit leads the series r jt at lag � if ρ j i (�) �= 0 and
� > 0. Equation (8.4) also shows that the diagonal element ρi i (�) is simply the lag-�
autocorrelation coefficient of rit .

Based on this discussion, we obtain some important properties of the cross-
correlations when � > 0. First, in general, ρi j (�) �= ρ j i (�) for i �= j because
the two correlation coefficients measure different linear relationships between
{rit } and {r jt }. Therefore, Γ� and ρ� are in general not symmetric. Second, from
Cov(rit , r j,t−�) = Cov(r j,t−�, rit ) and by the weak stationarity assumption

Cov(r j,t−�, rit ) = Cov(r j,t , ri,t+�) = Cov[r jt , ri,t−(−�)],

we have �i j (�) = � j i (−�). Because � j i (−�) is the ( j, i)th element of the matrix
Γ−� and the equality holds for 1 ≤ i, j ≤ k, we have Γ� = Γ′−� and ρ� = ρ′−�. Con-
sequently, unlike the univariate case, ρ� �= ρ−� for a general vector time series when
� > 0. Because ρ� = ρ′−�, it suffices in practice to consider the cross-correlation
matrixes ρ� for � ≥ 0.
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8.1.2 Linear Dependence

Considered jointly, the cross-correlation matrixes {ρ� | � = 0, 1, . . .} of a weakly
stationary vector time series contain the following information:

1. The diagonal elements {ρi i (�) | � = 0, 1, . . .} are the autocorrelation function
of rit .

2. The off-diagonal element ρi j (0) measures the concurrent linear relationship
between rit and r jt .

3. For � > 0, the off-diagonal element ρi j (�) measures the linear dependence of
rit on the past value r j,t−�.

Therefore, if ρi j (�) = 0 for all � > 0, then rit does not depend linearly on any past
value r j,t−� of the r jt series.

In general, the linear relationship between two time series {rit } and {r jt } can be
summarized as follows:

1. rit and r jt have no linear relationship if ρi j (�) = ρ j i (�) = 0 for all � ≥ 0.
2. rit and r jt are concurrently correlated if ρi j (0) �= 0.
3. rit and r jt have no lead-lag relationship if ρi j (�) = 0 and ρ j i (�) = 0 for all
� > 0. In this case, we say the two series are uncoupled.

4. There is a unidirectional relationship from rit to r jt if ρi j (�) = 0 for all � > 0,
but ρ j i (v) �= 0 for some v > 0. In this case, rit does not depend on any past
value of r jt , but r jt depends on some past values of rit .

5. There is a feedback relationship between rit and r jt if ρi j (�) �= 0 for some
� > 0 and ρ j i (v) �= 0 for some v > 0.

The conditions stated earlier are sufficient conditions. A more informative approach
to study the relationship between time series is to build a multivariate model for the
series because a properly specified model considers simultaneously the serial and
cross correlations among the series.

8.1.3 Sample Cross-Correlation Matrixes

Given the data {rt | t = 1, . . . , T }, the cross-covariance matrix Γ� can be estimated
by

Γ̂� = 1

T

T∑
t=�+1

(rt − r̄)(rt−� − r̄)′, � ≥ 0, (8.5)

where r̄ = ∑T
t=1 rt/T is the vector of sample means. The cross-correlation matrix

ρ� is estimated by

ρ̂� = D̂
−1Γ̂�D̂

−1
, � ≥ 0, (8.6)
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where D̂ is the k × k diagonal matrix of the sample standard deviations of the com-
ponent series.

Similar to the univariate case, asymptotic properties of the sample cross-correla-
tion matrix ρ̂� have been investigated under various assumptions; see, for instance,
Fuller (1976, Chapter 6). The estimate is consistent, but is biased in a finite sample.
For asset return series, the finite sample distribution of ρ̂� is rather complicated partly
because of the presence of conditional heteroscedasticity and high kurtosis. If the
finite-sample distribution of cross-correlations is needed, we recommend that proper
bootstrap resampling methods be used to obtain an approximate estimate of the dis-
tribution. For many applications, a crude approximation of the variance of ρ̂i j (�) is
sufficient.

Example 8.1. Consider the monthly log returns of IBM stock and the S&P
500 index from January 1926 to December 1999 with 888 observations. The returns
include dividend payments and are in percentages. Denote the returns of IBM stock
and the S&P 500 index by r1t and r2t , respectively. These two returns form a bivariate
time series rt = (r1t , r2t )

′. Figure 8.1 shows the time plots of rt using the same scale.
Figure 8.2 shows some scatterplots of the two series. The plots show that the two
return series are concurrently correlated. Indeed, the sample concurrent correlation
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(a) IBM monthly log returns: 1/1926-12/1999
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(b) Monthly log returns of SP500 index: 1/1926-12/1999

Figure 8.1. Time plot of monthly log returns in percentages for IBM stock and the S&P 500
index from January 1926 to December 1999.
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(d) SP5 vs SP5(1)

Figure 8.2. Some scatterplots for monthly log returns of IBM stock and the S&P 500 index:
(a) Concurrent plot, (b) S&P 500 versus lag-1 IBM, (c) IBM versus lag-1 S&P 500, and
(d) S&P 500 versus lag-1 S&P 500.

coefficient between the two returns is 0.64, which is statistically significant at the 5%
level. However, the cross-correlations at lag 1 are weak if any.

Table 8.1 provides some summary statistics and cross-correlation matrixes of the
two series. For a bivariate series, each CCM is a 2 × 2 matrix with four correlations.
Empirical experience indicates that it is rather hard to absorb simultaneously many
cross-correlation matrixes, especially when the dimension k is greater than 3. To
overcome this difficulty, we use the simplifying notation of Tiao and Box (1981) and
define a simplified cross-correlation matrix consisting of three symbols “+,” “−,”
and “.,” where

1. “+” means that the corresponding correlation coefficient is greater than or
equal to 2/

√
T ,

2. “−” means that the corresponding correlation coefficient is less than or equal
to −2/

√
T , and

3. “.” means that the corresponding correlation coefficient is between −2/
√

T
and 2/

√
T ,

where 1/
√

T is the asymptotic 5% critical value of the sample correlation under the
assumption that rt is a white noise series.
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Table 8.1. Summary Statistics and Cross-Correlation Matrixes of Monthly Log
Returns of IBM Stock and the S&P 500 Index. The Data Span is From January
1926 to December 1999.

(a) Summary statistics
Ticker Mean St. Error Skewness Exc.Kurt. Minimum Maximum

IBM 1.240 6.729 −0.237 1.917 −30.37 30.10
SP5 0.537 5.645 −0.521 8.117 −35.58 35.22

(b) Cross-correlation matrixes
Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

.08 .10

.04 .08
.02 −.06
.02 −.02

−.02 −.07
−.07 −.11

−.02 −.03
.04 .02

.00 .07

.00 .08

(c) Simplified notation[+ +
. +

] [
. .

. .

] [
. −
− −

] [
. .

. .

] [
. .

. +
]

Table 8.1(c) shows the simplified CCM for the monthly log returns of IBM stock
and the S&P 500 index. It is easily seen that significant cross-correlations at the
approximate 5% level appear mainly at lags 1 and 3. An examination of the sample
CCMs at these two lags indicates that (a) S&P 500 index returns have some marginal
autocorrelations at lags 1 and 3, and (b) IBM stock returns depend weakly on the
previous returns of the S&P 500 index. The latter observation is based on the signif-
icance of cross-correlations at the (1, 2)th element of lag-1 and lag-3 CCMs.

Figure 8.3 shows the sample autocorrelations and cross-correlations of the two
series. Since ACF is symmetric with respect to lag 0, only those of positive lags
are shown. Because lagged values of the S&P 500 index return are used to compute
the cross-correlations, the plot associated with positive lags in Figure 8.3(c) shows
the dependence of IBM stock return on the past S&P 500 index returns, and the
plot associated with negative lags shows the linear dependence of the index return
on the past IBM stock returns. The horizontal lines in the plots are the asymptotic
two standard-error limits of the sample auto- and cross-correlation coefficients. From
the plots, the dynamic relationship is weak between the two return series, but their
contemporaneous correlation is statistically significant.

Example 8.2. Consider the simple returns of monthly indexes of U.S. gov-
ernment bonds with maturities in 30 years, 20 years, 10 years, 5 years, and 1 year.
The data obtained from CRSP database have 696 observations starting from Jan-
uary 1942 to December 1999. Let rt = (r1t , . . . , r5t )

′ be the return series with
decreasing time to maturity. Figure 8.4 shows the time plots of rt on the same scale.
The variability of the 1-year bond returns is much smaller than that of returns with
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Figure 8.3. Sample auto- and cross-correlation functions of two monthly log returns:
(a) sample ACF of IBM stock returns, (b) sample ACF of S&P 500 index returns, and (c) cross-
correlations between IBM stock return and lagged S&P 500 index returns.

longer maturities. The sample means and standard deviations of the data are µ̂ =
10−2(0.43, 0.45, 0.45, .0.46, 0.44)′ and σ̂ = 10−2(2.53, 2.43, 1.97, 1.39, 0.53)′.
The concurrent correlation matrix of the series is

ρ̂0 =


1.00 0.98 0.92 0.85 0.63
0.98 1.00 0.91 0.86 0.64
0.92 0.91 1.00 0.90 0.68
0.85 0.86 0.90 1.00 0.82
0.63 0.64 0.68 0.82 1.00

 .

It is not surprising that (a) the series have high concurrent correlations, and (b) the
correlations between long-term bonds are higher than those between short-term
bonds.

Table 8.2 gives the lag-1 and lag-2 cross-correlation matrixes of rt and the cor-
responding simplified matrixes. Most of the significant cross-correlations are at lag
1, and the five return series appear to be intercorrelated. In addition, lag-1 and lag-2
sample ACFs of the 1-year bond returns are substantially higher than those of other
series with longer maturities.
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(e) 1 year maturity

Figure 8.4. Time plots of monthly simple returns of five indexes of U.S. government bonds
with maturities in 30 years, 20 years, 10 years, 5 years, and 1 year. The sample period is from
January 1942 to December 1999.

Table 8.2. Sample Cross-Correlation Matrixes of Monthly
Simple Returns of Five Indexes of U.S. Government Bonds. The
Data Span is From January 1942 to December 1999.

Lag 1 Lag 2

(a) Cross-correlations

.10 .08 .11 .12 .16

.10 .08 .12 .14 .17

.09 .08 .09 .13 .18

.14 .12 .15 .14 .22

.17 .15 .21 .22 .40

−.01 .00 .00 −.03 .03
−.01 .00 .00 −.04 .02
.01 .01 .01 −.02 .07

−.02 −.01 .00 −.04 .07
−.02 .00 .02 .02 .22

(b) Simplified cross-correlation matrixes
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +



. . . . .

. . . . .

. . . . .

. . . . .

. . . . +


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8.1.4 Multivariate Portmanteau Tests

The univariate Ljung–Box statistic Q(m) has been generalized to the multivariate
case by Hosking (1980, 1981) and Li and McLeod (1981). For a multivariate series,
the null hypothesis of the test statistic is H0 : ρ1 = · · · = ρm = 0, and the alternative
hypothesis Ha : ρi �= 0 for some i ∈ {1, . . . ,m}. Thus, the statistic is used to test
that there are no auto- and cross-correlations in the vector series rt . The test statistic
assumes the form

Qk(m) = T 2
m∑
�=1

1

T − �
tr (̂Γ

′
�Γ̂

−1
0 Γ̂�Γ̂

−1
0 ), (8.7)

where T is the sample size, k is the dimension of rt , and tr(A) is the trace of the
matrix A, which is the sum of the diagonal elements of A. Under the null hypothesis
and some regularity conditions, Qk(m) follows asymptotically a chi-squared distri-
bution with k2m degrees of freedom.

Remark: The Qk(m) statistics can be rewritten in terms of the sample cross-
correlation matrixes ρ̂�, but the expression involves Kronecker product ⊗ and vec-
torization of matrixes discussed in Appendix A of the chapter. Using these operators,
we have

Qk(m) = T 2
m∑
�=1

1

T − �
b′
�(ρ̂

−1
0 ⊗ ρ̂−1

0 )b�,

where b� = vec(ρ̂′
�). More specifically, the test statistic proposed by Li and McLeod

(1981) is

Q∗
k(m) = T

m∑
�=1

b′
�(ρ̂

−1
0 ⊗ ρ̂−1

0 )b� + k2m(m + 1)

2T
,

which is asymptotically equivalent to Qk(m).

Applying the Qk(m) statistics to the bivariate monthly log returns of IBM stock
and the S&P 500 index of Example 8.1, we have Q2(1) = 9.81, Q2(5) = 47.06,
and Q2(10) = 71.65. Based on asymptotic chi-squared distributions with degrees of
freedom 4, 20, and 40, the p values of these Q2(m) statistics are all close to zero.
Consequently, the Portmanteau tests confirm the existence of serial dependence in
the bivariate return series. For the five-dimensional monthly simple returns of bond
indexes in Example 8.2, we have Q5(5) = 1065.63, which is highly significant
compared with a chi-squared distribution with 125 degrees of freedom.

The Qk(m) statistic is a joint test for checking the first m cross-correlation
matrixes of rt . If it rejects the null hypothesis, then we must build a multivariate
model for the series to study the lead-lag relationships between the component
series. In what follows, we discuss some simple vector models useful for modeling
the linear dynamic structure of a multivariate financial time series.
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8.2 VECTOR AUTOREGRESSIVE MODELS

A simple vector model useful in modeling asset returns is the vector autoregressive
(VAR) model. A multivariate time series rt is a VAR process of order 1, or VAR(1)
for short, if it follows the model

rt = φ0 + Φrt−1 + at , (8.8)

where φ0 is a k-dimensional vector, Φ is a k × k matrix, and {at } is a sequence of
serially uncorrelated random vectors with mean zero and covariance matrix Σ. In
application, the covariance matrix Σ is required to be positive definite; otherwise,
the dimension of rt can be reduced. In the literature, it is often assumed that at is
multivariate normal.

Consider the bivariate case [i.e., k = 2, rt = (r1t , r2t )
′ and at = (a1t , a2t )

′]. The
VAR(1) model consists of the following two equations:

r1t = φ10 +
11r1,t−1 +
12r2,t−1 + a1t

r2t = φ20 +
21r1,t−1 +
22r2,t−1 + a2t ,

where 
i j is the (i, j)th element of Φ and φi0 is the i th element of φ0. Based on
the first equation, 
12 denotes the linear dependence of r1t on r2,t−1 in the presence
of r1,t−1. Therefore, 
12 is the conditional effect of r2,t−1 on r1t given r1,t−1. If

12 = 0, then r1t does not depend on r2,t−1, and the model shows that r1t only
depends on its own past. Similarly, if 
21 = 0, then the second equation shows that
r2t does not depend on r1,t−1 when r2,t−1 is given.

Consider the two equations jointly. If 
12 = 0 and 
21 �= 0, then there is a
unidirectional relationship from r1t to r2t . If 
12 = 
21 = 0, then r1t and r2t are
uncoupled. If 
12 �= 0 and 
21 �= 0, then there is a feedback relationship between
the two series.

In general, the coefficient matrix Φ measures the dynamic dependence of rt . The
concurrent relationship between r1t and r2t is shown by the off-diagonal element σ12
of the covariance matrix Σ of at . If σ12 = 0, then there is no concurrent linear rela-
tionship between the two component series. In the econometric literature, the VAR(1)
model in Eq. (8.8) is called a reduced-form model because it does not show explicitly
the concurrent dependence between the component series. If necessary, an explicit
expression involving the concurrent relationship can be deduced from the reduced-
form model by a simple linear transformation. Because Σ is positive definite, there
exists a lower triangular matrix L with unit diagonal elements and a diagonal matrix
G such that Σ = LGL′; see Appendix A on Cholesky Decomposition. Therefore,
L−1Σ(L′)−1 = G.

Define bt = (b1t , . . . , bkt )
′ = L−1at . Then

E(bt ) = L−1 E(at ) = 0, Cov(bt ) = L−1Σ(L−1)′ = L−1Σ(L′)−1 = G.
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Since G is a diagonal matrix, the components of bt are uncorrelated. Multiplying
L−1 from left to model (8.8), we obtain

L−1rt = L−1φ0 + L−1Φrt−1 + L−1at = φ∗
0 + Φ∗rt−1 + bt , (8.9)

where φ∗
0 = L−1φ0 is a k-dimensional vector and Φ∗ = L−1Φ is a k × k

matrix. Because of the special matrix structure, the kth row of L−1 is in the form
(wk1, wk2, . . . , wk,k−1, 1). Consequently, the kth equation of model (8.9) is

rkt +
k−1∑
i=1

wki ri t = φ∗
k,0 +

k∑
i=1


∗
ki ri,t−1 + bkt , (8.10)

where φ∗
k,0 is the kth element of φ∗

0 and 
∗
ki is the (k, i)th element of Φ∗. Because

bkt is uncorrelated with bit for 1 ≤ i < k, Eq. (8.10) shows explicitly the concurrent
linear dependence of rkt on rit , where 1 ≤ i ≤ k − 1. This equation is referred to as
a structural equation for rkt in the econometric literature.

For any other component rit of rt , we can rearrange the VAR(1) model so that
rit becomes the last component of rt . The prior transformation method can then be
applied to obtain a structural equation for rit . Therefore, the reduced-form model
(8.8) is equivalent to the structural form used in the econometric literature. In time
series analysis, the reduced-form model is commonly used for two reasons. The first
reason is ease in estimation. The second and main reason is that the concurrent cor-
relations cannot be used in forecasting.

Example 8.3. To illustrate the transformation from a reduced-form model to
structural equations, consider the bivariate AR(1) model[

r1t

r2t

]
=
[

0.2
0.4

]
+
[

0.2 0.3
−0.6 1.1

] [
r1,t−1
r2,t−1

]
+
[

a1t

a2t

]
, Σ =

[
2 1
1 1

]
.

For this particular covariance matrix Σ, the lower triangular matrix

L−1 =
[

1.0 0.0
−0.5 1.0

]

provides a Cholesky decomposition (i.e., L−1Σ(L′)−1 is a diagonal matrix). Premul-
tiplying L−1 to the previous bivariate AR(1) model, we obtain[

1.0 0.0
−0.5 1.0

] [
r1t

r2t

]
=
[

0.2
0.3

]
+
[

0.2 0.3
−0.7 0.95

] [
r1,t−1
r2,t−1

]
+
[

b1t

b2t

]
,

G =
[

2 0
0 0.5

]
,
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where G = Cov(bt ). The second equation of this transformed model gives

r2t = 0.3 + 0.5r1t − 0.7r1,t−1 + 0.95r2,t−1 + b2t ,

which shows explicitly the linear dependence of r2t on r1t .
Rearranging the order of elements in rt , the bivariate AR(1) model becomes[

r2t

r1t

]
=
[

0.4
0.2

]
+
[−0.6 1.1

0.2 0.3

] [
r2,t−1
r1,t−1

]
+
[

a2t

a1t

]
, Σ =

[
1 1
1 2

]
.

The lower triangular matrix needed in the Cholesky decomposition of Σ becomes

L−1 =
[

1.0 0.0
−1.0 1.0

]
.

Premultiplying L−1 to the earlier rearranged VAR(1) model, we obtain[
1.0 0.0

−1.0 1.0

] [
r2t

r1t

]
=
[

0.4
−0.2

]
+
[−0.6 1.1

0.8 −0.8

] [
r2,t−1
r1,t−1

]
+
[

c1t

c2t

]
,

G =
[

1 0
0 1

]
,

where G = Cov(ct ). The second equation now gives

r1t = −0.2 + 1.0r2t + 0.8r2,t−1 − 0.8r1,t−1 + c2t .

Again this equation shows explicitly the concurrent linear dependence of r1t on r2t .

8.2.1 Stationarity Condition and Moments of a VAR(1) Model

Assume that the VAR(1) model in Eq. (8.8) is weakly stationary. Taking expectation
of the model and using E(at ) = 0, we obtain

E(rt ) = φ0 + ΦE(rt−1).

Since E(rt ) is time-invariant, we have

µ ≡ E(rt ) = (I − Φ)−1φ0

provided that the matrix I − Φ is nonsingular, where I is the k × k identity matrix.
Using φ0 = (I − Φ)µ, the VAR(1) model in Eq. (8.8) can be written as

(rt − µ) = Φ(rt−1 − µ)+ at .

Let r̃t = rt −µ be the mean-corrected time series. Then the VAR(1) model becomes

r̃t = Φr̃t−1 + at . (8.11)
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This model can be used to derive properties of a VAR(1) model. By repeated substi-
tutions, we can rewrite Eq. (8.11) as

r̃t = at + Φat−1 + Φ2at−2 + Φ3at−3 + · · · .
This expression shows several characteristics of a VAR(1) process. First, since at is
serially uncorrelated, it follows that Cov(at , rt−1) = 0. In fact, at is not correlated
with rt−� for all � > 0. For this reason, at is referred to as the shock or innovation of
the series at time t . It turns out that, similar to the univariate case, at is uncorrelated
with the past value rt− j ( j > 0) for all time series models. Second, postmultiplying
the expression by a′

t , taking expectation, and using the fact of no serial correlations
in the at process, we obtain Cov(rt , at ) = Σ. Third, for a VAR(1) model, rt depends
on the past innovation at− j with coefficient matrix Φ j . For such dependence to be
meaningful, Φ j must converge to zero as j → ∞. This means that the k eigenvalues
of Φ must be less than 1 in modulus; otherwise, Φ j will either explode or converge
to a nonzero matrix as j → ∞. As a matter of fact, the requirement that all eigen-
values of Φ are less than 1 in modulus is the necessary and sufficient condition for
weak stationarity of rt provided that the covariance matrix of at exists. Notice that
this stationarity condition reduces to that of the univariate AR(1) case in which the
condition is |φ | < 1. Fourth, using the expression, we have

Cov(rt ) = Γ0 = Σ + ΦΣΦ′ + Φ2Σ(Φ2)′ + · · · =
∞∑

i=0

ΦiΣ(Φi )′,

where it is understood that Φ0 = I, the k × k identity matrix.
Postmultiplying r̃′

t−� to Eq. (8.11), taking expectation, and using the result
Cov(at , rt− j ) = E(at r̃

′
t− j ) = 0 for j > 0, we obtain

E(r̃t r̃
′
t−�) = ΦE(r̃t−1, r̃t−�)′, � > 0.

Therefore,

Γ� = ΦΓ�−1, � > 0, (8.12)

where Γ j is the lag- j cross-covariance matrix of rt . Again this result is a general-
ization of that of a univariate AR(1) process. By repeated substitutions, Eq. (8.12)
shows that

Γ� = Φ�Γ0, for � > 0.

8.2.2 Vector AR(p) Models

The generalization of VAR(1) to VAR(p) models is straightforward. The time series
rt follows a VAR(p) model if it satisfies

rt = φ0 + Φ1rt−1 + · · · + Φprt−p + at , p > 0, (8.13)
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whereφ0 and at are defined as before, and Φ j are k×k matrixes. Using the back-shift
operator B, the VAR(p) model can be written as

(I − Φ1 B − · · · − Φp B p)rt = φ0 + at ,

where I is the k × k identity matrix. This representation can be written in a compact
form as

Φ(B)rt = φ0 + at ,

where Φ(B) = I − Φ1 B − · · · − Φp B p is a matrix polynomial. If rt is weakly
stationary, then we have

µ = E(rt ) = (I − Φ1 − · · · − Φp)
−1φ0 = [Φ(1)]−1φ0

provided that the inverse exists. Let r̃t = rt − µ. The VAR(p) model becomes

r̃t = Φ1r̃t−1 + · · · + Φp r̃t−p + at . (8.14)

Using this equation and the same techniques as those for VAR(1) models, we obtain
that

• Cov(rt , at ) = Σ, the covariance matrix of at ;

• Cov(rt−�, at ) = 0 for � > 0;

• Γ� = Φ1Γ�−1 + · · · + ΦpΓ�−p for � > 0.

The last property is called the moment equations of a VAR(p) model. It is a multi-
variate version of the Yule–Walker equation of a univariate AR(p) model.

A simple approach to understanding properties of the VAR(p)model in Eq. (8.13)
is to make use of the results of the VAR(1) model in Eq. (8.8). This can be achieved
by transforming the VAR(p) model of rt into a kp-dimensional VAR(1) model.
Specifically, let xt = (r̃′

t−p+1, r̃′
t−p+2, . . . , r̃′

t )
′ and bt = (0, . . . , 0, a′

t )
′ be two kp-

dimensional processes. The mean of bt is zero and the covariance matrix of bt is a
kp × kp matrix with zero everywhere except for the lower right corner, which is Σ.
The VAR(p) model for rt can then be written in the form

xt = Φ∗xt−1 + bt , (8.15)

where Φ∗ is a kp × kp matrix given by

Φ∗ =


0 I 0 0 · · · 0
0 0 I 0 · · · 0
...

...
...

...

0 0 0 0 · · · I
Φp Φp−1 Φp−2 Φp−3 · · · Φ1

 ,
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where 0 and I are the k × k zero and identity matrix, respectively. In the literature,
Φ∗ is called the companion matrix of the matrix polynomial Φ(B).

Equation (8.15) is a VAR(1) model for xt , which contains rt as its last k compo-
nents. The results of a VAR(1) model shown in the previous subsection can now be
used to derive properties of the VAR(p)model via Eq. (8.15). For example, from the
definition, xt is weakly stationary if and only if rt is weakly stationary. Therefore,
the necessary and sufficient condition of weak stationarity for the VAR(p) model in
Eq. (8.13) is that all eigenvalues of Φ∗ in Eq. (8.15) are less than 1 in modulus.

Of particular relevance to financial time series analysis is the structure of the
coefficient matrixes Φ� of a VAR(p) model. For instance, if the (i, j)th element

i j (�) of Φ� is zero for all �, then rit does not depend on the past values of r jt . The
structure of the coefficient matrixes Φ� thus provides information on the lead-lag
relationship between the components of rt .

8.2.3 Building a VAR(p) Model

We continue to use the iterative procedure of order specification, estimation, and
model checking to build a vector AR model for a given time series. The concept of
partial autocorrelation function of a univariate series can be generalized to specify
the order p of a vector series. Consider the following consecutive VAR models:

rt = φ0 + Φ1rt−1 + at

rt = φ0 + Φ1rt−1 + Φ2rt−2 + at

... = ...

rt = φ0 + Φ1rt−1 + · · · + Φi rt−i + at (8.16)

... = ...

Parameters of these models can be estimated by the ordinary least squares (OLS)
method. This is called the multivariate linear regression estimation in multivariate
statistical analysis; see Johnson and Wichern (1998).

For the i th equation in Eq. (8.16), let Φ̂
(i)
j be the OLS estimate of Φ j and φ̂

(i)
0 be

the estimate of φ0, where the superscript (i) is used to denote that the estimates are
for a VAR(i) model. Then the residual is

â(i)t = rt − φ̂(i)0 − Φ̂
(i)
1 rt−1 − · · · − Φ̂

(i)
i rt−i .

For i = 0, the residual is defined as r̂(0)t = rt − r̄, where r̄ is the sample mean of rt .
The residual covariance matrix is defined as

Σ̂i = 1

T − 2i − 1

T∑
t=i+1

â(i)t (̂a
(i)
t )

′, i ≥ 0. (8.17)
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To specify the order p, one can test the hypothesis H0 : Φ� = 0 versus the alternative
hypothesis Ha : Φ� �= 0 sequentially for � = 1, 2, . . .. For example, using the first
equation in Eq. (8.16), we can test the hypothesis H0 : Φ1 = 0 versus the alternative
hypothesis Ha : Φ1 �= 0. The test statistic is

M(1) = −
(

T − k − 2
1

2

)
ln

(
| Σ̂1 |
|Σ̂0 |

)
,

where Σ̂i is defined in Eq. (8.17) and | A | denotes the determinant of the matrix
A. Under some regularity conditions, the test statistic M(1) is asymptotically a chi-
squared distribution with k2 degrees of freedom; see Tiao and Box (1981).

In general, we use the i th and (i −1)th equations in Eq. (8.16) to test H0 : Φi = 0
versus Ha : Φi �= 0—that is, testing a VAR(i) model versus a VAR(i − 1) model.
The test statistic is

M(i) = −
(

T − k − i − 3

2

)
ln

(
| Σ̂i |

| Σ̂i−1 |

)
. (8.18)

Asymptotically, M(i) is distributed as a chi-squared distribution with k2 degrees of
freedom.

Alternatively, one can use the Akaike information criterion (AIC) or its variants to
select the order p. Assume that at is multivariate normal and consider the i th equa-
tion in Eq. (8.16). One can estimate the model by the maximum likelihood (ML)
method. For AR models, the OLS estimates φ̂0 and Φ̂ j are equivalent to the (con-
ditional) ML estimates. However, there are differences between the estimates of Σ.
The ML estimate of Σ is

Σ̃i = 1

T

T∑
t=i+1

â(i)t [̂a(i)t ]′. (8.19)

The AIC of a VAR(i) model under the normality assumption is defined as

AI C(i) = ln(| Σ̃i |)+ 2k2i

T
.

For a given vector time series, one selects the AR order p such that AI C(p) =
min1≤i≤p0 AI C(i), where p0 is a prespecified positive integer.

Example 8.4. Assuming that the bivariate series of monthly log returns of
IBM stock and the S&P 500 index discussed in Example 8.1 follows a VAR model,
we apply the M(i) statistics and AIC to the data. Table 8.3 shows the results of
these statistics. Both statistics indicate that a VAR(3) model might be adequate for
the data. The M(i) statistics are marginally significant at lags 1, 3, and 5 at the 5%
level. The minimum of AIC occurs at order 3. For this particular instance, the M(i)
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Table 8.3. Order-Specification Statistics for the Monthly Log
Returns of IBM Stock and the S&P 500 Index from January
1926 to December 1999. The 5% and 1% Critical Values of
a chi-Squared Distribution with 4 Degrees of Freedom are 9.5
and 13.3.

Order 1 2 3 4 5 6

M(i) 9.81 8.93 12.57 6.08 9.56 2.80
AIC 6.757 6.756 6.750 6.753 6.751 6.756

statistics are nonsignificant at the 1% level, confirming the previous observation that
the dynamic linear dependence between the two return series is weak.

Estimation and Model Checking
For a specified VAR model, one can estimate the parameters using either the ordi-
nary least squares method or the maximum likelihood method. The two methods
are asymptotically equivalent. Under some regularity conditions, the estimates are
asymptotically normal; see Reinsel (1993). A fitted model should then be checked
carefully for any possible inadequacy. The Qk(m) statistic can be applied to the
residual series to check the assumption that there are no serial or cross-correlations
in the residuals. For a fitted VAR(p) model, the Qk(m) statistic of the residuals is
asymptotically a chi-squared distribution with k2m − g degrees of freedom, where g
is the number of estimated parameters in the AR coefficient matrixes.

Example 8.4. (continued) Table 8.4(a) shows the estimation results of a
VAR(3) model for the bivariate series of monthly log returns of IBM stock and

Table 8.4. Estimation Results of a VAR(3) Model for the Monthly Log Returns, in Per-
centages, of IBM Stock and the S&P 500 Index from January 1926 to December 1999.

Param. φ0 Φ1 Φ3 Σ

(a) Full model

Estimate
1.20
0.58

0.011 0.108
−0.013 0.084

0.039 −0.112
−0.007 −0.105

44.44 23.51
23.51 31.29

St. Error
0.23
0.19

0.043 0.051
0.036 0.043

0.044 0.052
0.037 0.044

(b) Simplified model

Estimate
1.24
0.57

0 0.117
0 0.073

0 −0.083
0 −0.109

44.48 23.51
23.51 31.29

St. Error
0.23
0.19

− 0.040
− 0.033

− 0.040
− 0.033
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the S&P 500 index. The specified model is in the form

rt = φ0 + Φ1rt−1 + Φ3rt−3 + at , (8.20)

where the first component of rt denotes IBM stock returns. For this particular
instance, we only use AR coefficient matrixes at lags 1 and 3 because of the weak
serial dependence of the data. In general, when the M(i) statistics and the AIC
criterion specify a VAR(3) model, all three AR lags should be used. Table 8.4(b)
shows the estimation results after some statistically insignificant parameters are set
to zero. The Qk(m) statistics of the residual series for the fitted model in Table 8.4(b)
give Q2(4) = 18.17 and Q2(8) = 41.26. Since the fitted VAR(3) model has four
parameters in the AR coefficient matrixes, these two Qk(m) statistics are distributed
asymptotically as a chi-squared distribution with degrees of freedom 12 and 28,
respectively. The p values of the test statistics are 0.111 and 0.051, and hence the
fitted model is adequate at the 5% significance level. As shown by the univari-
ate analysis, the return series are likely to have conditional heteroscedasticity. We
discuss multivariate volatility in Chapter 9.

From the fitted model in Table 8.4(b), we make the following observations.
(a) The concurrent correlation coefficient between the two innovational series is
23.51/

√
44.48 × 31.29 = 0.63, which, as expected, is close to the sample correla-

tion coefficient between r1t and r2t . (b) The two log return series have positive and
significant means, implying that the log prices of the two series had an upward trend
over the data span. (c) The model shows that

IBMt = 1.24 + 0.117SP5t−1 − 0.083SP5t−3 + a1t

SP5t = 0.57 + 0.073SP5t−1 − 0.109SP5t−3 + a2t .

Consequently, at the 5% significant level, there is a unidirectional dynamic relation-
ship from the monthly S&P 500 index return to the IBM return. If the S&P 500 index
represents the U.S. stock market, then IBM return is affected by the past movements
of the market. However, past movements of IBM stock returns do not significantly
affect the U.S. market, even though the two returns have substantial concurrent cor-
relation. Finally, the fitted model can be written as[

IBMt

SP5t

]
=
[

1.24
0.57

]
+
[

0.117
0.073

]
SP5t−1 −

[
0.083
0.109

]
SP5t−3 +

[
a1t

a2t

]
,

indicating that SP5t is the driving factor of the bivariate series.

Forecasting
Treating a properly built model as the true model, one can apply the same techniques
as those in the univariate analysis to produce forecasts and standard deviations of
the associated forecast errors. For a VAR(p) model, the 1-step ahead forecast at the
time origin h is rh(1) = φ0 + ∑p

i=1 Φi rh+1−i , and the associated forecast error
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is eh(1) = ah+1. The covariance matrix of the forecast error is Σ. If rt is weakly
stationary, then the �-step ahead forecast rh(�) converges to its mean vector µ as the
forecast horizon � increases.

In summary, building a VAR model involves three steps: (a) use the test statistic
M(i) or the Akaike information criterion to identify the order, (b) estimate the spec-
ified model by using the least squares method (in some cases, one can reestimate
the model by removing statistically insignificant parameters), and (c) use the Qk(m)
statistic of the residuals to check the adequacy of a fitted model. Other characteristics
of the residual series, such as conditional heteroscedasticity and outliers, can also be
checked. If the fitted model is adequate, then it can be used to obtain forecasts.

8.3 VECTOR MOVING-AVERAGE MODELS

A vector moving-average model of order q, or VMA(q), is in the form

rt = θ0 + at − Θ1at−1 − · · · − Θqat−q or rt = θ0 + Θ(B)at , (8.21)

where θ0 is a k-dimensional vector, Θi are k × k matrixes, and Θ(B) = I − Θ1 B −
· · · − Θq Bq is the MA matrix polynomial in the back-shift operator B. Similar
to the univariate case, VMA(q) processes are weakly stationary provided that the
covariance matrix Σ of at exists. Taking expectation of Eq. (8.21), we obtain that
µ = E(rt ) = θ0. Thus, the constant vector θ0 is the mean vector of rt for a VMA
model.

Let r̃t = rt − θ0 be the mean-corrected VAR(q) process. Then using Eq. (8.21)
and the fact that {at } has no serial correlations, we have

1. Cov(rt , at ) = Σ,
2. Γ0 = Σ + Θ1ΣΘ′

1 + · · · + ΘqΣΘ′
q ,

3. Γ� = 0 if � > q, and
4. Γ� = ∑q

j=� Θ jΣΘ′
j−� if 1 ≤ � ≤ q, where Θ0 = −I.

Since Γ� = 0 for � > q, the cross-correlation matrixes (CCM) of a VMA(q) process
rt satisfy

ρ� = 0, � > q. (8.22)

Therefore, similar to the univariate case, the sample CCMs can be used to identify
the order of a VMA process.

To better understand the VMA processes, let us consider the bivariate MA(1)
model

rt = θ0 + at − Θat−1 = µ+ at − Θat−1, (8.23)

where, for simplicity, the subscript of Θ1 is removed. This model can be written
explicitly as
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r1t

r2t

]
=
[
µ1
µ2

]
+
[

a1t

a2t

]
−
[
�11 �12
�21 �22

] [
a1,t−1
a2,t−1

]
. (8.24)

It says that the current return series rt only depends on the current and past shocks.
Therefore, the model is a finite-memory model.

Consider the equation for r1t in Eq. (8.24). The parameter �12 denotes the linear
dependence of r1t on a2,t−1 in the presence of a1,t−1. If �12 = 0, then r1t does not
depend on the lagged values of a2t and, hence, the lagged values of r2t . Similarly,
if �21 = 0, then r2t does not depend on the past values of r1t . The off-diagonal
elements of Θ thus show the dynamic dependence between the component series.
For this simple VMA(1) model, we can classify the relationships between r1t and r2t

as follows:

1. They are uncoupled series if �12 = �21 = 0.
2. There is a unidirectional dynamic relationship from r1t to r2t if �12 = 0,

but �21 �= 0. The opposite unidirectional relationship holds if �21 = 0, but
�12 �= 0.

3. There is a feedback relationship between r1t and r2t if �12 �= 0 and �21 �= 0.

Finally, the concurrent correlation between rit is the same as that between ait . The
previous classification can be generalized to a VMA(q) model.

Estimation
Unlike the VAR models, estimation of VMA models is much more involved; see
Hillmer and Tiao (1979), Lütkepohl (1991), and the references therein. For the like-
lihood approach, there are two methods available. The first method is the conditional
likelihood method that assumes that at = 0 for t ≤ 0. The second method is the exact
likelihood method that treats at with t ≤ 0 as additional parameters of the model. To
gain some insight into the problem of estimation, we consider the VMA(1) model
in Eq. (8.23). Suppose that the data are {rt | t = 1, . . . , T } and at is multivariate
normal. For a VMA(1) model, the data depend on a0.

Conditional MLE
The conditional likelihood method assumes that a0 = 0. Under such an assumption
and rewriting the model as at = rt − θ0 + Θat−1, we can compute the shock at

recursively as

a1 = r1 − θ0, a2 = r2 − θ0 + Θ1a1, . . . .

Consequently, the likelihood function of the data becomes

f (r1, . . . , rT | θ0,Θ1,Σ) =
T∏

t=1

1

(2π)k/2|Σ |1/2 exp

[
−1

2
a′

tΣ
−1at

]
,

which can be evaluated to obtain the parameter estimates.
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Exact MLE
For the exact likelihood method, a0 is an unknown vector that must be estimated
from the data to evaluate the likelihood function. For simplicity, let r̃t = rt − θ0 be
the mean-corrected series. Using r̃t and Eq. (8.23), we have

at = r̃t + Θat−1. (8.25)

By repeated substitutions, a0 is related to all r̃t as

a1 = r̃1 + Θa0

a2 = r̃2 + Θa1 = r̃2 + Θr̃1 + Θ2a0

... = ... (8.26)

aT = r̃T + Θr̃T −1 + · · · + ΘT −1r̃1 + ΘT a0.

Thus, a0 is a linear function of the data if θ0 and Θ are given. This result enables
us to estimate a0 using the data and initial estimates of θ0 and Θ. More specifically,
given θ0, Θ, and the data, we can define

r∗
t = r̃t + Θr̃t−1 + · · · + Θt−1r̃1, for t = 1, 2, . . . , T .

Equation (8.26) can then be rewritten as

r∗
1 = −Θa0 + a1

r∗
2 = −Θ2a0 + a2

... = ...

r∗
T = −ΘT a0 + aT .

This is in the form of a multiple linear regression with parameter vector a0, even
though the covariance matrix Σ of at may not be a diagonal matrix. If initial esti-
mate of Σ is also available, one can premultiply each equation of the prior system by
Σ−1/2, which is the square-root matrix of Σ. The resulting system is indeed a multi-
ple linear regression, and the ordinary least squares method can be used to obtain an
estimate of a0. Denote the estimate by â0.

Using the estimate â0, we can compute the shocks at recursively as

a1 = r1 − θ0 + Θâ0, a2 = r2 − θ0 + Θa1, . . .

In addition, we can also derive the exact likelihood function of the data from the
joint distribution of {at | t = 0, . . . , T }. The resulting likelihood function can then
be evaluated to obtain the exact ML estimates.

In summary, the exact likelihood method works as follows. Given initial estimates
of θ0, Θ, and Σ, one uses Eq. (8.26) to derive an estimate of a0. This estimate is in
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turn used to compute at recursively using Eq. (8.25) and starting with a1 = r̃1 +Θ̂a0.
The resulting {at }T

t=1 are then used to evaluate the exact likelihood function of the
data to update the estimates of θ0, Θ, and Σ. The whole process is then repeated
until the estimates converge. This iterative method to evaluate the exact likelihood
function applies to the general VMA(q) models.

From the previous discussion, the exact likelihood method requires more inten-
sive computation than the conditional likelihood approach does. But it provides more
accurate parameter estimates, especially when some eigenvalues of Θ is close to 1
in modulus. Hillmer and Tiao (1979) provide some comparison between the condi-
tional and exact likelihood estimations of VMA models. In multivariate time series
analysis, the exact maximum likelihood method becomes important if one suspects
that the data might have been overdifferenced. Overdifferencing may occur in many
situations (e.g., differencing individual components of a co-integrated system; see
discussion later on co-integration).

In summary, building a VMA model involves three steps: (a) use the sample cross-
correlation matrixes to specify the order q—for a VMA(q) model, ρ� = 0 for � > q;
(b) estimate the specified model by using either the conditional or exact likelihood
method—the exact method is preferred when the sample size is not large; and (c) the
fitted model should be checked for adequacy (e.g., applying the Qk(m) statistics to
the residual series). Finally, forecasts of a VMA model can be obtained by using the
same procedure as a univariate MA model.

Example 8.5. Consider again the bivariate series of monthly log returns in
percentages of IBM stock and the S&P 500 index from January 1926 to December
1999. Since significant cross-correlations occur mainly at lags 1 and 3, we employ
the VMA(3) model

rt = θ0 + at − Θ1at−1 − Θ3at−3 (8.27)

for the data. Table 8.5 shows the estimation results of the model. The Qk(m) statistics
for the residuals of the simplified model give Q2(4) = 17.25 and Q2(8) = 39.30.
Compared with chi-squared distributions with 12 and 28 degrees of freedom, the
p values of these statistics are 0.1404 and 0.0762, respectively. Thus, the model is
adequate at the 5% significance level.

From Table 8.5, we make the following observations:

1. The difference between conditional and exact likelihood estimates is small for
this particular example. This is not surprising because the sample size is not
small and, more important, the dynamic structure of the data is weak.

2. The VMA(3) model provides essentially the same dynamic relationship for the
series as that of the VAR(3) model in Example 8.4. The monthly log return of
IBM stock depends on the previous returns of the S&P 500 index. The market
return, in contrast, does not depend on lagged returns of IBM stock. In other
words, the dynamic structure of the data is driven by the market return, not
by IBM return. The concurrent correlation between the two returns remains
strong, however.
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Table 8.5. Estimation Results for Monthly Log Returns of IBM Stock and the
S&P 500 Index Using the Vector Moving-Average Model in Eq. (8.27). The Data
Span is from January 1926 to December 1999.

Parameter θ0 Θ1 Θ3 Σ

(a) Full model with conditional likelihood method

Estimate
1.24
0.54

−.013 −.121
.020 −.101

−.038 .108
.014 .105

44.48 23.52
23.52 31.20

St. Error
0.24
0.18

.043 .051

.036 .043
.044 .052
.036 .043

(b) Full model with exact likelihood method

Estimate
1.24
0.54

−.013 −.121
.020 −.101

−.038 .108
.013 .105

44.48 23.52
23.52 31.20

St. Error
0.24
0.18

.043 .051

.036 .043
.044 .052
.036 .043

(c) Simplified model with exact likelihood method

Estimate
1.24
0.54

.000 −.126

.000 −.084
.000 .082
.000 .114

44.54 23.51
23.51 31.21

St. Error
0.23
0.18

− .040
− .033

− .040
− .033

8.4 VECTOR ARMA MODELS

Univariate ARMA models can also be generalized to handle vector time series. The
resulting models are called VARMA models. The generalization, however, encoun-
ters some new issues that do not occur in developing VAR and VMA models. One
of the issues is the identifiability problem. Unlike the univariate ARMA models,
VARMA models may not be uniquely defined. For example, the VMA(1) model[

r1t

r2t

]
=
[

a1t

a2t

]
−
[

0 2
0 0

] [
a1,t−1
a2,t−1

]
is identical to the VAR(1) model[

r1t

r2t

]
−
[

0 −2
0 0

] [
r1,t−1
r2,t−1

]
=
[

a1t

a2t

]
.

The equivalence of the two models can easily be seen by examining their component
models. For the VMA(1) model, we have

r1t = a1t − 2a2,t−1, r2t = a2t .
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For the VAR(1) model, the equations are

r1t + 2r2,t−1 = a1t , r2t = a2t .

From the model for r2t , we have r2,t−1 = a2,t−1. Therefore, the models for r1t are
identical. This type of identifiability problem is harmless because either model can
be used in a real application.

Another type of identifiability problem is more troublesome. Consider the
VARMA(1, 1) model[

r1t

r2t

]
−
[

0.8 −2
0 0

] [
r1,t−1
r2,t−1

]
=
[

a1t

a2t

]
−
[−0.5 0

0 0

] [
a1,t−1
a2,t−1

]
.

This model is identical to the VARMA(1,1) model[
r1t

r2t

]
−
[

0.8 −2 + η

0 ω

] [
r1,t−1
r2,t−1

]
=
[

a1t

a2t

]
−
[−0.5 η

0 ω

] [
a1,t−1
a2,t−1

]
,

for any nonzero ω and η. In this particular instance, the equivalence occurs because
we have r2t = a2t in both models. The effects of the parameters ω and η on the
system cancel out between AR and MA parts of the second model. Such an identifia-
bility problem is serious because, without proper constraints, the likelihood function
of a vector ARMA(1,1) model for the data is not uniquely defined, resulting in a
situation similar to the exact multicollinearity in a regression analysis. This type of
identifiability problem can occur in a vector model even if none of the components
is a white noise series.

These two simple examples highlight the new issues involved in the generaliza-
tion to VARMA models. Building a VARMA model for a given data set thus requires
some attention. In the time series literature, methods of structural specification have
been proposed to overcome the identifiability problem; see Tiao and Tsay (1989),
Tsay (1991), and the references therein. We do not discuss the detail of structural
specification here because VAR and VMA models are sufficient in most financial
applications. When VARMA models are used, only lower order models are enter-
tained (e.g., a VARMA(1, 1) or VARMA(2, 1) model) especially when the time
series involved are not seasonal.

A VARMA(p, q) model can be written as

Φ(B)rt = φ0 + Θ(B)at ,

where Φ(B) = I − Φ1 B − · · · − Φp B p and Θ(B) = I − Θ1 B − · · · − Θq Bq are
two k × k matrix polynomials. We assume that the two matrix polynomials have
no left common factors; otherwise, the model can be simplified. The necessary and
sufficient condition of weak stationarity for rt is the same as that for the VAR(p)
model with matrix polynomial Φ(B). For v > 0, the (i, j)th elements of the coeffi-
cient matrixes Φv and Θv measure the linear dependence of r1t on r j,t−v and a j,t−v ,
respectively. If the (i, j)th element is zero for all AR and MA coefficient matrixes,
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then rit does not depend on the lagged values of r jt . However, the converse propo-
sition does not hold in a VARMA model. In other words, nonzero coefficients at the
(i, j)th position of AR and MA matrixes may exist even when rit does not depend
on any lagged value of r jt .

To illustrate, consider the following bivariate model[

11(B) 
12(B)

21(B) 
22(B)

] [
r1t

r2t

]
=
[
�11(B) �12(B)
�21(B) �22(B)

] [
a1t

a2t

]
.

Here the necessary and sufficient conditions for the existence of a unidirectional
dynamic relationship from r1t to r2t are


22(B)�12(B)−
12(B)�22(B) = 0, but


11(B)�21(B)−
21(B)�11(B) �= 0. (8.28)

These conditions can be obtained as follows. Letting

�(B) = |Φ(B) | = 
11(B)
22(B)−
12(B)
21(B)

be the determinant of the AR matrix polynomial and premultiplying the model by
the matrix [


22(B) −
12(B)
−
21(B) 
11(B)

]
,

we can rewrite the bivariate model as

Ω(B)
[

r1t

r2t

]
=[


22(B)�11(B)−
12(B)�21(B) 
22(B)�12(B)−
12(B)�22(B)

11(B)�21(B)−
21(B)�11(B) 
11(B)�22(B)−
21(B)�12(B)

] [
a1t

a2t

]
.

Consider the equation for r1t . The first condition in Eq. (8.28) shows that r1t does not
depend on any past value of a2t or r2t . From the equation for r2t , the second condition
in Eq. (8.28) implies that r2t indeed depends on some past values of a1t . Based on
Eq. (8.28), �12(B) = 
12(B) = 0 is a sufficient, but not necessary, condition for
the unidirectional relationship from r1t to r2t .

Estimation of a VARMA model can be carried out by either the conditional or
exact maximum likelihood method. The Qk(m) statistic continues to apply to the
residual series of a fitted model, but the degrees of freedom of its asymptotic chi-
squared distribution are k2m − g, where g is the number of estimated parameters in
both the AR and MA coefficient matrixes.

Example 8.6. To demonstrate VARMA modeling, we consider two U.S.
monthly interest-rate series. The first series is the 1-year Treasury constant maturity



VECTOR ARMA MODELS 325

year

lo
g-

ra
te

1960 1970 1980 1990 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 8.5. Time plots of log U.S. monthly interest rates from April 1953 to January 2001.
The solid line denotes the 1-year Treasury constant maturity rate, and the dashed line denotes
the 3-year rate.

rate, and the second series is the 3-year Treasury constant maturity rate. The data are
obtained from the Federal Reserve Bank of St Louis, and the sampling period is from
April 1953 to January 2001. There are 574 observations. To ensure the positiveness
of U.S. interest rates, we analyze the log series. Figure 8.5 shows the time plots of
the two log interest-rate series. The solid line denotes the 1-year maturity rate. The
two series moved closely in the sampling period.

The M(i) statistics and AIC criterion specify a VAR(4) model for the data. How-
ever, we employ a VARMA(2, 1)model because the two models provide similar fits.
Table 8.6 shows the parameter estimates of the VARMA(2, 1)model obtained by the
exact likelihood method. We removed the insignificant parameters and reestimated
the simplified model. The residual series of the fitted model has some minor serial

Table 8.6. Parameter Estimates of a VARMA(2, 1) Model for Two Monthly
U.S. Interest-Rate Series.

Par. Φ1 Φ2 φ0 Θ1 Σ × 103

Est. 1.57 −0.54 −0.60 0.56 .020 0.60 −1.17 3.58 2.50
0.99 .025 −0.47 2.50 2.19

Std. 0.10 0.16 0.09 0.15 .013 0.11 0.18
0.01 .011 0.04
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Figure 8.6. Residual plots for log U.S. monthly interest-rate series. The fitted model is a
VARMA(2, 1).

and cross-correlations at lags 7 and 11. Figure 8.6 shows the residual plots and indi-
cates the existence of some outlying data points. The model can be further improved,
but it seems to capture the dynamic structure of the data reasonably well.

The final VARMA(2, 1)model shows some interesting characteristics of the data.
First, the interest-rate series are highly contemporaneously correlated. The concur-
rent correlation coefficient is 2.5/

√
3.58 × 2.19 = 0.893. Second, there is a uni-

directional linear relationship from the 3-year rate to the 1-year rate because the
(2, 1)th elements of all AR and MA matrixes are zero, but some (2, 1)th element is
not zero. As a matter of fact, the model in Table 8.6 shows that

r3t = 0.025 + 0.99r3,t−1 + a3t + 0.47a3,t−1

r1t = 0.020 + 1.57r1,t−1 − 0.60r1,t−2 − 0.54r3,t−1 + 0.56r3,t−2

+ a1t − 0.60a1,t−1 + 1.17a3,t−1,

where rit is the log series of i-year interest rate and ait is the corresponding shock
series. Therefore, the 3-year interest rate does not depend on the past values of 1-
year rate, but the 1-year rate depends on the past values of 3-year rate. Third, the two
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interest-rate series appear to be unit-root nonstationary. Using the back-shift operator
B, the model can be rewritten approximately as

(1 − B)r3t = 0.025 + (1 + 0.47B)a3t

(1 − B)(1 − 0.6B)r1t = 0.02 − 0.55B(1 − B)r3,t + (1 − 0.6B)a1t + 1.17Ba3,t .

8.4.1 Marginal Models of Components

Given a vector model for rt , the implied univariate models for the components rit

are the marginal models. For a k-dimensional ARMA(p, q) model, the marginal
models are ARMA[kp, (k − 1)p +q]. This result can be obtained in two steps. First,
the marginal models of a VMA(q) model is univariate MA(q). Assume that rt is
a VMA(q) process. Because the cross-correlation matrix of rt vanishes after lag q
(i.e., ρ� = 0 for � > q), the ACF of rit is zero beyond lag q. Therefore, rit is an MA
process and its univariate model is in the form rit = θi,0 +∑q

j=1 θi, j bi,t− j , where
{bit } is a sequence of uncorrelated random variables with mean zero and variance
σ 2

ib. The parameters θi, j and σib are functions of the parameters of the VMA model
for rt .

The second step to obtain the result is to diagonalize the AR matrix polynomial
of a VARMA(p, q) model. For illustration, consider the bivariate AR(1) model[

1 −
11 B −
12 B
−
21 B 1 −
22 B

] [
r1t

r2t

]
=
[

a1t

a2t

]
.

Premultiplying the model by the matrix polynomial[
1 −
22 B 
12 B

21 B 1 −
11 B

]
,

we obtain

[(1 −
11 B)(1 −
22 B)−
12
22 B2]
[

r1t

r2t

]
=
[

1 −
22 B −
12 B
−
21 B 1 −
11 B

] [
a1t

a2t

]
.

The left-hand side of the prior equation shows that the univariate AR polynomi-
als for rit are of order 2. In contrast, the right-hand side of the equation is in a
VMA(1) form. Using the result of VMA models in step 1, we show that the univariate
model for rit is ARMA(2, 1). The technique generalizes easily to the k-dimensional
VAR(1)model, and the marginal models are ARMA(k, k − 1). More generally, for a
k-dimensional VAR(p) model, the marginal models are ARMA[kp, (k − 1)p]. The
result for VARMA models follows directly from those of VMA and VAR models.

The order [kp, (k − 1)p + q] is the maximum order (i.e., the upper bound) for the
marginal models. The actual marginal order of rit can be much lower.
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8.5 UNIT-ROOT NONSTATIONARITY AND CO-INTEGRATION

When modeling several unit-root nonstationary time series jointly, one may encoun-
ter the case of co-integration. Consider the bivariate ARMA(1, 1) model

[
x1t

x2t

]
−
[

0.5 −1.0
−0.25 0.5

] [
x1,t−1
x2,t−1

]
=
[

a1t

a2t

]
−
[

0.2 −0.4
−0.1 0.2

] [
a1,t−1
a2,t−1

]
, (8.29)

where the covariance matrix Σ of the shock at is positive definite. This is not a
weakly stationary model because the two eigenvalues of the AR coefficient matrix
are 0 and 1. Figure 8.7 shows the time plots of a simulated series of the model with
200 data points and Σ = I, whereas Figure 8.8 shows that sample autocorrelations of
the two component series xit . It is easy to see that the two series have high autocor-
relations and exhibit features of unit-root nonstationarity. The two marginal models
of xt are indeed unit-root nonstationary. Rewrite the model as

[
1 − 0.5B B

0.25B 1 − 0.5B

] [
x1t

x2t

]
=
[

1 − 0.2B 0.4B
0.1B 1 − 0.2B

] [
a1t

a2t

]
.
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Figure 8.7. Time plots of a simulated series based on model (8.29) with identity covariance
matrix for the shocks.
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Figure 8.8. Sample autocorrelation functions of two simulated component series. There are
200 observations, and the model is given by Eq. (8.29) with identity covariance matrix for the
shocks.

Premultiplying the prior equation by[
1 − 0.5B −B
−0.25B 1 − 0.5B

]
,

we obtain the result[
1 − B 0

0 1 − B

] [
x1t

x2t

]
=
[

1 − 0.7B −0.6B
−0.15B 1 − 0.7B

] [
a1t

a2t

]
.

Therefore, each component xit of the model is unit-root nonstationary and follows
an ARIMA(0, 1, 1) model.

However, we can consider a linear transformation by defining[
y1t

y2t

]
=
[

1.0 −2.0
0.5 1.0

] [
x1t

x2t

]
≡ Lxt ,[

b1t

b2t

]
=
[

1.0 −2.0
0.5 1.0

] [
a1t

a2t

]
≡ Lat .
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The VARMA model of the transformed series yt can be obtained as follows:

Lxt = LΦxt−1 + Lat − LΘat−1

= LΦL−1Lxt−1 + Lat − LΘL−1Lat−1

= LΦL−1(Lxt−1)+ bt − LΘL−1bt−1.

Thus, the model for yt is[
y1t

y2t

]
−
[

1.0 0
0 0

] [
y1,t−1
y2,t−1

]
=
[

b1t

b2t

]
−
[

0.4 0
0 0

] [
b1,t−1
b2,t−1

]
. (8.30)

From the prior model, we see that (a) y1t and y2t are uncoupled series with con-
current correlation equal to that between the shocks b1t and b2t , (b) y1t follows a
univariate ARIMA(0,1,1) model, and (c) y2t is a white noise series (i.e., y2t = b2t ).
In particular, the model in Eq. (8.30) shows that there is only a single unit root in the
system. Consequently, the unit roots of x1t and x2t are introduced by the unit root
of y1t .

The phenomenon that both x1t and x2t are unit-root nonstationary, but there is
only a single unit root in the vector series, is referred to as co-integration in the
econometric and time series literature. Another way to define co-integration is to
focus on linear transformations of unit-root nonstationary series. For the simulated
example of model (8.29), the transformation shows that the linear combination y2t =
0.5x1t + x2t does not have a unit root. Consequently, x1t and x2t are co-integrated if
(a) both of them are unit-root nonstationary, and (b) they have a linear combination
that is unit-root stationary.

Generally speaking, for a k-dimensional unit-root nonstationary time series, co-
integration exists if there are less than k unit roots in the system. Let h be the number
of unit roots in the k-dimensional series xt . Co-integration exists if 0 < h < k,
and the quantity k − h is called the number of co-integrating factors. Alternatively,
the number of co-integrating factors is the number of different linear combinations
that are unit-root stationary. The linear combinations are called the co-integrating
vectors. For the prior simulated example, y2t = (0.5, 1)xt so that (0.5, 1)′ is a co-
integrating vector for the system. For more discussions on co-integration and co-
integration tests, see Box and Tiao (1977), Engle and Granger (1987), Stock and
Watson (1988), and Johansen (1989).

The concept of co-integration is interesting and has attracted a lot of attention in
the literature. However, there are difficulties in testing for co-integration in a real
application. The main source of difficulties is that co-integration tests overlook the
scaling effects of the component series. Interested readers are referred to Cochrane
(1988) and Tiao, Tsay, and Wang (1993) for further discussion.

While I have some misgivings on the practical value of co-integration tests, the
idea of co-integration is highly relevant in financial study. For example, consider the
stock of Finnish Nokia Corporation. Its price on the Helsinki Stock Market must
move in unison with the price of its American Depositary Receipts on the New York
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Stock Exchange; otherwise there exists some arbitrage opportunity for investors.
If the stock price has a unit root, then the two price series must be co-integrated.
In practice, such a co-integration can exist after adjusting for transaction costs and
exchange-rate risk. We discuss issues like this later in Section 8.6.

8.5.1 An Error-Correction Form

Because there are more unit-root nonstationary components than the number of unit
roots in a co-integrated system, differencing individual components to achieve sta-
tionarity results in overdifferencing. Overdifferencing leads to the problem of unit
roots in the MA matrix polynomial, which in turn may encounter difficulties in
parameter estimation. If the MA matrix polynomial contains unit roots, the vector
time series is said to be noninvertible.

Engle and Granger (1987) discuss an error-correction representation for a co-
integrated system that overcomes the difficulty of estimating noninvertible VARMA
models. Consider the co-integrated system in Eq. (8.29). Let ∇xt = xt − xt−1 be
the differenced series. Subtracting xt−1 from both sides of the equation, we obtain a
model for ∇xt as[∇x1t

∇x2t

]
=
[−0.5 −1.0
−0.25 −0.5

] [
x1,t−1
x2,t−1

]
+
[

a1t

a2t

]
−
[

0.2 −0.4
−0.1 0.2

] [
a1,t−1
a2,t−1

]
=
[ −1
−0.5

]
[0.5, 1.0]

[
x1,t−1
x2,t−1

]
+
[

a1t

a2t

]
−
[

0.2 −0.4
−0.1 0.2

] [
a1,t−1
a2,t−1

]
.

This is a stationary model because both ∇xt and [0.5, 1.0]xt = y2t are unit-root sta-
tionary. Because xt−1 is used in the right-hand side of the previous equation, the MA
matrix polynomial is the same as before and, hence, the model does not encounter the
problem of noninvertibility. Such a formulation is referred to as an error-correction
model for ∇xt , and it can be extended to the general co-integrated VARMA model.
For a co-integrated VARMA(p, q) model with m co-integrating factors, an error-
correction representation is

∇xt = αβxt−1 +
p−1∑
i=1

Φ∗
i ∇xt−i + at −

q∑
j=1

Θ j at− j , (8.31)

whereα and β are k × m and m × k full-rank matrixes. The AR coefficient matrixes
Φ∗

i are functions of the original coefficient matrixes Φ j ; see the Remark later. The
time seriesβxt is unit-root stationary, and the rows ofβ are the co-integrating vectors
of xt .

Existence of the stationary series βxt−1 in the error-correction representation
(8.31) is natural. It can be regarded as a “compensation” term for the over differenced
system ∇xt . The stationarity of βxt−1 can be justified as follows. The theory of unit-
root time series shows that the sample correlation coefficient between a unit-root
nonstationary series and a stationary series converges to zero as the sample size goes
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to infinity; see Tsay and Tiao (1990) and the references therein. In an error-correction
representation, xt−1 is unit-root nonstationary, but ∇xt is stationary. Therefore, the
only way that ∇xt can relate meaningfully to xt−1 is through a stationary series
βxt−1.

Remark: The AR coefficient matrixes of the error-correction model in Eq. (8.31)
are given by

Φ∗
p−1 = −Φp

Φ∗
p−2 = −Φp−1 − Φp

... = ...

Φ∗
1 = −Φ2 − · · · − Φp

αβ = Φp + Φp−1 + · · · + Φ1 − I = −Φ(1).

Remark: Our discussion of co-integration assumes that all unit roots are of mul-
tiplicity 1, but the concept can be extended to cases in which the unit roots have dif-
ferent multiplicities. Also, if the number of co-integrating factors m is given, then the
error-correction model in Eq. (8.31) can be estimated by likelihood methods. Finally,
there are many ways to construct an error-correction representation. In fact, one can
use any αβxt−v for 1 ≤ v ≤ p in Eq. (8.31) with some modifications to the AR
coefficient matrixes Φ∗

i .

8.6 THRESHOLD CO-INTEGRATION AND ARBITRAGE

In this section, we focus on detecting arbitrage opportunities in index trading by
using multivariate time series methods. We also demonstrate that simple univariate
nonlinear models of Chapter 4 can be extended naturally to the multivariate case in
conjunction with the idea of co-integration.

Our study considers the relationship between the price of S&P 500 index futures
and the price of the shares underlying the index on the cash market. Let ft,� be the
log price of the index futures at time t with maturity �, and let st be the log price
of the shares underlying the index on the cash market at time t . A version of the
cost-of-carry model in the finance literature states

ft,� − st = (rt,� − qt,�)(�− t)+ z∗
t , (8.32)

where rt,� is the risk-free interest rate, qt,� is the dividend yield with respect to the
cash price at time t , and (� − t) is the time to maturity of the futures contract;
see Brenner and Kroner (1995), Dwyer, Locke, and Yu (1996), and the references
therein.

The z∗
t process of model (8.32) must be unit-root stationary; otherwise there exist

persistent arbitrage opportunities. Here an arbitrage trading consists of simultane-
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ously buying (short-selling) the security index and selling (buying) the index futures
whenever the log prices diverge by more than the cost of carrying the index over time
until maturity of the futures contract. Under the weak stationarity of z∗

t , for arbitrage
to be profitable, z∗

t must exceed a certain value in modulus determined by transaction
costs and other economic and risk factors.

It is commonly believed that the ft,� and st series of the S&P 500 index contain
a unit root, but Eq. (8.32) indicates that they are co-integrated after adjusting for
the effect of interest rate and dividend yield. The co-integrating vector is (1,−1)
after the adjustment, and the co-integrated series is z∗

t . Therefore, one should use
an error-correction form to model the return series rt = (∇ ft ,∇st )

′, where ∇ ft =
ft,� − ft−1,� and ∇st = st − st−1, where for ease in notation we drop the maturity
time � from the subscript of ∇ ft .

8.6.1 Multivariate Threshold Model

In practice, arbitrage tradings affect the dynamic of the market, and hence the model
for rt may vary over time depending on the presence or absence of arbitrage tradings.
Consequently, the prior discussions lead naturally to the model

rt =


c1 +∑p

i=1 Φ(1)i rt−i + β1zt−1 + a(1)t if zt−1 ≤ γ1

c2 +∑p
i=1 Φ(2)i rt−i + β2zt−1 + a(2)t if γ1 < zt−1 ≤ γ2

c3 +∑p
i=1 Φ(3)i rt−i + β3zt−1 + a(3)t if γ2 < zt−1,

(8.33)

where zt = 100z∗
t , γ1 < 0 < γ2 are two real numbers, and {a(i)t } are sequences

of two-dimensional white noises and are independent of each other. Here we use
zt = 100z∗

t because the actual value of z∗
t is relatively small.

The model in Eq. (8.33) is referred to as a multivariate threshold model with three
regimes. The two real numbers γ1 and γ2 are the thresholds and zt−1 is the threshold
variable. The threshold variable zt−1 is supported by the data; see Tsay (1998). In
general, one can select zt−d as a threshold variable by considering d ∈ {1, . . . , d0},
where d0 is a prespecified positive integer.

Model (8.33) is a generalization of the threshold autoregressive model of Chap-
ter 4. It is also a generalization of the error-correlation model of Eq. (8.31). As men-
tioned earlier, an arbitrage trading is profitable only when z∗

t or, equivalently, zt is
large in modulus. Therefore, arbitrage tradings only occurred in regimes 1 and 3 of
model (8.33). As such, the dynamic relationship between ft,� and st in regime 2
is determined mainly by the normal market force, and hence the two series behave
more or less like a random walk. In other words, the two log prices in the middle
regime should be free from arbitrage effects and, hence, free from the co-integration
constraint. From an econometric viewpoint, this means that the estimate of β2 in the
middle regime should be insignificant.

In summary, we expect that the co-integration effects between the log price of
the futures and the log price of security index on the cash market are significant in
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regimes 1 and 3, but insignificant in regime 2. This phenomenon is referred to as a
threshold co-integration; see Balke and Fomby (1997).

8.6.2 The Data

The data used in this case study are the intraday transaction data of the S&P 500
index in May 1993 and its June futures contract traded at the Chicago Mercantile
Exchange; see Forbes, Kalb, and Kofman (1999), who used the data to construct a
minute-by-minute bivariate price series with 7060 observations. To avoid the unduly
influence of unusual returns, I replaced 10 extreme values (5 on each side) by the
simple average of their two nearest neighbors. This step does not affect the qualitative
conclusion of the analysis, but may affect the conditional heteroscedasticity in the
data. For simplicity, we do not consider conditional heteroscedasticity in the study.
Figure 8.9 shows the time plots of the log returns of the index futures and cash prices
and the associated threshold variable zt = 100z∗

t of model (8.32).
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Figure 8.9. Time plots of 1-minute log returns of the S&P 500 index futures and cash prices
and the associated threshold variable in May 1993: (a) log returns of the index futures, (b) log
returns of the index cash prices, and (c) the zt series.
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8.6.3 Estimation

A formal specification of the multivariate threshold model in Eq. (8.33) includes
selecting the threshold variable, determining the number of regimes, and choos-
ing the order p for each regime. Interested readers are referred to Tsay (1998)
and Forbes, Kalb, and Kofman (1999). The thresholds γ1 and γ2 can be esti-
mated by using some information criteria (e.g., the Akaike information criterion
[AIC] or the sum of squares of residuals). Assuming p = 8, d ∈ {1, 2, 3, 4},
γ1 ∈ [−0.15,−0.02], and γ2 ∈ [0.025, 0.145], and using a grid search method with
300 points on each of the two intervals, the AIC selects zt−1 as the threshold variable
with thresholds γ̂1 = −0.0226 and γ̂2 = 0.0377. Details of the parameter estimates
are given in Table 8.7.

From Table 8.7, we make the following observations. First, the t ratios of β̂2 in
the middle regime show that, as expected, the estimates are insignificant at the 5%
level, confirming that there is no co-integration between the two log prices in the
absence of arbitrage opportunities. Second, ∇ ft depends negatively on ∇ ft−1 in all
three regimes. This is in agreement with the bid-ask bounce discussed in Chapter 5.
Third, past log returns of the index futures seem to be more informative than the past
log returns of the cash prices because there are more significant t ratios in ∇ ft−i

than in ∇st−i . This is reasonable because futures series are in general more liquid.
For more information on index arbitrage, see Dwyer, Locke, and Yu (1996).

8.7 PRINCIPAL COMPONENT ANALYSIS

We have focused on modeling the dynamic structure of a vector time series in the
previous sections. Of equal importance in multivariate time series analysis is the
covariance (or correlation) structure of the series. For example, the covariance struc-
ture of a vector return series plays an important role in portfolio selection. In what
follows, we discuss some statistical methods useful in studying the covariance struc-
ture of a vector time series.

Given a k-dimensional random variable r = (r1, . . . , rk)
′ with covariance matrix

Σr , a principal component analysis (PCA) is concerned with using a few linear com-
binations of ri to explain the structure of Σr . If r denotes the monthly log returns
of k assets, then PCA can be used to study the source of variations of these k asset
returns. Here the key word is few so that simplification can be achieved in multivari-
ate analysis.

8.7.1 Theory of PCA

PCA applies to either the covariance matrix Σr or the correlation matrix ρr of r.
Since the correlation matrix is the covariance matrix of the standardized random
vector r∗ = D−1r, where D is the diagonal matrix of standard deviations of the
components of r, we use covariance matrix in our theoretical discussion. Let ci =
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Table 8.7. Least Squares Estimates and Their t Ratios of the Multivariate Thresh-
old Model in Eq. (8.33) for the S&P 500 Index Data in May 1993. The Numbers of
Data Points for the Three Regimes are 2234, 2410, and 2408, Respectively.

Regime 1 Regime 2 Regime 3
∇ ft ∇st ∇ ft ∇st ∇ ft ∇st

φ0 0.00002 0.00005 0.00000 0.00000 −0.00001 −0.00005
t ( 1.47) ( 7.64) (−0.07) ( 0.53) (−0.74) (−6.37)

∇ ft−1 −0.08468 0.07098 −0.03861 0.04037 −0.04102 0.02305
t (−3.83) ( 6.15) (−1.53) ( 3.98) (−1.72) ( 1.96)

∇ ft−2 −0.00450 0.15899 0.04478 0.08621 −0.02069 0.09898
t (−0.20) ( 13.36) ( 1.85) ( 8.88) (−0.87) ( 8.45)

∇ ft−3 0.02274 0.11911 0.07251 0.09752 0.00365 0.08455
t (0.95) ( 9.53) ( 3.08) ( 10.32) ( 0.15) ( 7.02)

∇ ft−4 0.02429 0.08141 0.01418 0.06827 −0.02759 0.07699
t (0.99) ( 6.35) (0.60) ( 7.24) (−1.13) ( 6.37)

∇ ft−5 0.00340 0.08936 0.01185 0.04831 −0.00638 0.05004
t (0.14) ( 7.10) (0.51) ( 5.13) (−0.26) ( 4.07)

∇ ft−6 0.00098 0.07291 0.01251 0.03580 −0.03941 0.02615
t (0.04) ( 5.64) (0.54) ( 3.84) (−1.62) ( 2.18)

∇ ft−7 −0.00372 0.05201 0.02989 0.04837 −0.02031 0.02293
t (−0.15) ( 4.01) ( 1.34) ( 5.42) (−0.85) ( 1.95)

∇ ft−8 0.00043 0.00954 0.01812 0.02196 −0.04422 0.00462
t (0.02) (0.76) (0.85) ( 2.57) (−1.90) (0.40)

∇st−1 −0.08419 0.00264 −0.07618 −0.05633 0.06664 0.11143
t (−2.01) (0.12) (−1.70) (−3.14) ( 1.49) ( 5.05)

∇st−2 −0.05103 0.00256 −0.10920 −0.01521 0.04099 −0.01179
t (−1.18) ( 0.11) (−2.59) (−0.90) (0.92) (−0.53)

∇st−3 0.07275 −0.03631 −0.00504 0.01174 −0.01948 −0.01829
t ( 1.65) (−1.58) (−0.12) (0.71) (−0.44) (−0.84)

∇st−4 0.04706 0.01438 0.02751 0.01490 0.01646 0.00367
t ( 1.03) (0.60) (0.71) (0.96) (0.37) (0.17)

∇st−5 0.08118 0.02111 0.03943 0.02330 −0.03430 −0.00462
t ( 1.77) ( 0.88) (0.97) ( 1.43) (−0.83) (−0.23)

∇st−6 0.04390 0.04569 0.01690 0.01919 0.06084 −0.00392
t (0.96) ( 1.92) (0.44) ( 1.25) ( 1.45) (−0.19)

∇st−7 −0.03033 0.02051 −0.08647 0.00270 −0.00491 0.03597
t (−0.70) (0.91) (−2.09) (0.16) (−0.13) ( 1.90)

∇st−8 −0.02920 0.03018 0.01887 −0.00213 0.00030 0.02171
t (−0.68) ( 1.34) (0.49) (−0.14) (-0.01) ( 1.14)

zt−1 0.00024 0.00097 −0.00010 0.00012 0.00025 0.00086
t ( 1.34) ( 10.47) (−0.30) (0.86) ( 1.41) ( 9.75)
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(ci1, . . . , cik)
′ be a k-dimensional vector, where i = 1, . . . , k. Then

yi = c′
i r =

k∑
j=1

ci jr j

is a linear combination of the random vector r. If r consists of the simple returns
of k stocks, then yi is the return of a portfolio that assigns weight ci j to the j th
stock. Since multiplying a constant to ci does not affect the proportion of allocation
assigned to the j th stock, we standardize the vector ci so that c′

i ci = ∑k
j=1 c2

i j = 1.
Using properties of a linear combination of random variables, we have

Var(yi ) = c′
iΣr ci , i = 1, . . . , k (8.34)

Cov(yi , y j ) = c′
iΣr c j , i, j = 1, . . . , k. (8.35)

The idea of PCA is to find linear combinations ci such that yi and y j are uncorrelated
for i �= j and the variances of yi are as large as possible. More specifically:

1. the first principal component of r is the linear combination y1 = c′
1r that

maximizes Var(y1) subject to the constraint c′
1c1 = 1,

2. the second principal component of r is the linear combination y2 = c′
2r that

maximizes Var(y2) subject to the constraints c′
2c2 = 1 and Cov(y2, y1) = 0,

and

3. the i th principal component of r is the linear combination yi = c′
i r that max-

imizes Var(yi ) subject to the constraints c′
i ci = 1 and Cov(yi , y j ) = 0 for

j = 1, . . . , i − 1.

Since the covariance matrix Σr is non-negative definite, it has a spectral decom-
position; see Appendix A. Let (λ1, e1), . . . , (λk, ek) be the eigenvalue-eigenvector
pairs of Σr , where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. We have the following statistical result.

Result: The i th principal component of r is yi = e′
i r = ∑k

j=1 ei jr j for i =
1, . . . , k. Moreover,

Var(yi ) = e′
iΣr ei = λi , i = 1, . . . , k

Cov(yi , y j ) = e′
iΣr e j = 0, i �= j.

If some eigenvalues λi are equal, the choices of the corresponding eigenvectors ei

and hence yi are not unique. In addition, we have

k∑
i=1

Var(ri ) = tr(Σr ) =
k∑

i=1

λi =
k∑

i=1

Var(yi ). (8.36)
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The result of Eq. (8.36) says that

Var(yi )∑k
i=1 Var(ri )

= λi

λ1 + · · · + λk
.

Consequently, the proportion of total variance in r explained by the i th principal com-
ponent is simply the ratio between the i th eigenvalue and the sum of all eigenvalues
of Σr . One can also compute the cumulative proportion of total variance explained
by the first i principal components [i.e., (

∑i
j=1 λ j )/(

∑k
j=1 λ j )]. In practice, one

selects a small i such that the prior cumulative proportion is large.
Since tr(ρr ) = k, the proportion of variance explained by the i th principal com-

ponent becomes λi/k when the correlation matrix is used to perform the PCA.
A byproduct of the PCA is that a zero eigenvalue of Σr , or ρr , indicates the

existence of an exact linear relationship between the components of r. For instance,
if the smallest eigenvalue λk = 0, then by the prior Result Var(yk) = 0. Therefore,
yk = ∑k

j=1 ek jr j is a constant and there are only k − 1 random quantities in r. In
this case, the dimension of r can be reduced. For this reason, PCA has been used in
the literature as a tool for dimension reduction.

8.7.2 Empirical PCA

In application, the covariance matrix Σr and the correlation matrix ρr of the return
vector r are unknown, but they can be estimated consistently by the sample covari-
ance and correlation matrixes under some regularity conditions. Assuming that the
returns are weakly stationary and the data consist of {rt | t = 1, . . . , T }, we have the
following estimates

Σ̂r ≡ [σ̂i j,r ] = 1

T − 1

T∑
t=1

(rt − r̄)(rt − r̄)′, r̄ = 1

T

T∑
t=1

rt (8.37)

ρ̂r = D̂
−1Σ̂r D̂

−1
(8.38)

where D̂ = diag{√σ̂11,r , . . . ,
√
σ̂kk,r } is the diagonal matrix of sample standard

errors of rt . Methods to compute eigenvalues and eigenvectors of a symmetric matrix
can then be used to perform the PCA. Most statistical packages now have the capa-
bility to perform principal component analysis.

Example 8.7. Consider the monthly log returns of International Business
Machines, Hewlett-Packard, Intel Corporation, Merrill Lynch, and Morgan Stanley
Dean Witter from January 1990 to December 1999. The returns are in percentages
and include dividends. The data set has 120 observations. Figure 8.10 shows the
time plots of these five monthly return series. As expected, returns of companies in
the same industrial sector tend to exhibit similar patterns.

Denote the returns by r′ = (IBM,HWP, INTC,MER,MWD). The sample mean
vector of the returns is (1.47, 1.97, 3.05, 2.30, 2.36)′ and the sample covariance and
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Figure 8.10. Time plots of monthly log returns in percentages and including dividends for
International Business Machines, Hewlett-Packard, Intel, Merrill Lynch, and Morgan Stanley
Dean Witter from January 1990 to December 1999.

correlation matrixes are

Σ̂r =


73.10
36.48 103.60
27.08 48.86 113.96
16.06 37.59 27.96 105.56
16.33 40.72 26.86 85.47 109.91

 ,

ρ̂r =


1.00
0.42 1.00
0.30 0.45 1.00
0.18 0.36 0.26 1.00
0.18 0.38 0.24 0.79 1.00

 .
Table 8.8 gives the results of PCA using both the covariance and correlation

matrixes. Also given are eigenvalues, eigenvectors, and proportions of variabilities
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Table 8.8. Results of Principal Component Analysis for the Monthly
Log Returns, Including Dividends, of Stocks of IBM, Hewlett-
Packard, Intel, Merrill Lynch, and Morgan Stanley Dean Witter from
January 1990 to December 1999. The Eigenvectors Are in Columns.

(a) Using sample covariance matrix

Eigenvalue 256.16 116.14 64.91 46.82 22.11

Proportion 0.506 0.229 0.128 0.093 0.044

Cumulative 0.506 0.736 0.864 0.956 1.000

Eigenvector 0.246 0.327 0.586 −0.700 0.018
0.461 0.360 0.428 0.687 −0.050
0.409 0.585 −0.683 −0.153 0.033
0.522 −0.452 −0.082 −0.115 −0.710
0.536 −0.467 −0.036 −0.042 0.701

(b) Using sample correlation matrix

Eigenvalue 2.4563 1.1448 0.6986 0.4950 0.2053

Proportion 0.491 0.229 0.140 0.099 0.041

Cumulative 0.491 0.720 0.860 0.959 1.000

Eigenvector 0.342 0.525 0.691 −0.362 −0.012
0.474 0.314 −0.043 0.820 0.050
0.387 0.405 −0.717 −0.414 −0.034
0.503 −0.481 0.052 −0.147 0.701
0.505 −0.481 0.071 −0.062 −0.711

explained by the principal components. Consider the correlation matrix and denote
the sample eigenvalues and eigenvectors by λ̂i and êi . We have

λ̂1 = 2.456, ê1 = (0.342, 0.474, 0.387, 0.503, 0.505)′

λ̂2 = 1.145, ê2 = (0.525, 0.314, 0.405,−0.481,−0.481)′

for the first two principal components. These two components explain about 72%
of the total variability of the data, and they have interesting interpretations. The first
component is a roughly equally weighted linear combination of the stock returns.
This component might represent the general movement of the stock market and hence
is a market component. The second component represents the difference between the
two industrial sectors—namely, technologies versus financial services. It might be
an industrial component. Similar interpretations of principal components can also be
found by using the covariance matrix of r.

An informal but useful procedure to determine the number of principal compo-
nents needed in an application is to examine the scree plot, which is the time plot
of the eigenvalues λ̂i ordered from the largest to the smallest (i.e., a plot of λ̂i vs
i). Figure 8.11(a) shows the scree plot for the five stock returns of Example 8.7.
By looking for an elbow in the scree plot, indicating that the remaining eigenvalues
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Figure 8.11. Scree plots for two 5-dimensional asset returns: (a) series of Example 8.7, and
(b) bond index returns of Example 8.9.

are relatively small and all about the same size, one can determine the appropriate
number of components. For both plots in Figure 8.11, two components appear to be
appropriate. Finally, except for the case in which λ j = 0 for j > i , selecting the first
i principal components only provides an approximation to the total variance of the
data. If a small i can provide a good approximation, then the simplification becomes
valuable.

8.8 FACTOR ANALYSIS

One of the main difficulties in multivariate analysis is the “curse of dimensional-
ity.” In particular, the number of parameters of a parametric model often increases
dramatically when the order of the model or the dimension of the time series is
increased. Simplifying methods are often sought to overcome the difficulty of curse
of dimensionality. From an empirical viewpoint, multivariate data often exhibit sim-
ilar patterns indicating the existence of common structure hidden in the data. Factor
analysis is one of those simplifying methods available in the literature. The aim of
factor analysis is to identify a few factors that can account for most of the variations
in the covariance or correlation matrix of the data.
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Traditional factor analysis assumes that the data have no serial correlations. This
assumption is often violated by financial data taken with frequency less than or equal
to a week. However, the assumption appears to be reasonable for asset returns with
lower frequencies (e.g., monthly returns of stocks or market indexes). If the assump-
tion is violated, then one can use the parametric models discussed in this book to
remove the linear dynamic dependence of the data and apply factor analysis to the
residual series.

In what follows, we discuss factor analysis based on the orthogonal factor model.
Consider the k-dimensional log returns r = (r1, . . . , rk)

′ and assume that the mean
and covariance matrix of r are µ and Σ. For a return series, this assumption is equiv-
alent to requiring that r is weakly stationary. The factor model postulates that r is
linearly dependent on a few unobservable random variables F = ( f1, f2, . . . , fm)

′
and k additional noises ε = (ε1, . . . , εk)

′. Here m < k, fi are the common factors,
and the εi are the errors. Mathematically, the factor model is

r1 − µ1 = �11 f1 + · · · + �1m fm + ε1

r2 − µ2 = �21 f1 + · · · + �2m fm + ε2

... = ...

rk − µk = �k1 f1 + · · · + �km fm + εk,

or equivalently in matrix notation

r − µ = LF + ε, (8.39)

where L = [�i j ]k×m is the matrix of factor loadings, �i j is the loading of the i th
variable on the j th factor, and εi is the specific error of ri . A key feature of the prior
factor model is that the m factors fi and the k errors εi are unobservable. As such,
Eq. (8.39) is not a multivariate linear regression model, even though it has a similar
appearance.

The factor model in Eq. (8.39) is an orthogonal factor model if it satisfies the
following assumptions:

1. E(F) = 0 and Cov(F) = Im , the m × m identity matrix;
2. E(ε) = 0 and Cov(ε) = Ψ = diag{�1, . . . , �k} (i.e., Ψ is a k × k diagonal

matrix); and
3. F and ε are independent so that Cov(F, ε) = E(Fε′) = 0m×k .

Under the previous assumptions, it is easy to see that

Σ = Cov(r) = E[(r − µ)(r − µ)′]
= E[(LF + ε)(LF + ε)′]
= LE(FF′)L′ + E(εF′)L′ + LE(Fε′)+ E(εε′)

= LL′ + Ψ (8.40)
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and

Cov(r,F) = E[(r − µ)F′] = LE(FF′)+ E(εF′) = L. (8.41)

Using Eqs. (8.40) and (8.41), we see that for the orthogonal factor model in Eq. (8.39)

Var(ri ) = �2
i1 + · · · + �2

im +�i

Cov(ri , r j ) = �i1� j1 + · · · + �im� jm

Cov(ri , f j ) = �i j .

The quantity �2
i1 +· · ·+�2

im , which is the portion of the variance of ri contributed by
the m common factors, is called the communality. The remaining portion �i of the
variance of ri is called the uniqueness or specific variance. Let c2

i = �2
i1 + · · · + �2

im
be the communality, which is the sum of squares of the loadings of the i th variable
on the m common factors. The variance of component ri becomes Var(ri ) = c2

i +�i .
In practice, not every covariance matrix has an orthogonal factor representation.

In other words, there exists a random variable r that does not have any orthogonal
factor representation. Furthermore, the orthogonal factor representation of a random
variable is not unique. In fact, for any m × m orthogonal matrix P satisfying PP′ =
P′P = I, let L∗ = LP and F∗ = P′F. Then

r − µ = LF + ε = LPP′F + ε = L∗F∗ + ε.

In addition, E(F∗) = 0 and Cov(F∗) = P′ Cov(F)P = P′P = I. Thus, L∗ and F∗
form another orthogonal factor model for r. This nonuniqueness of orthogonal fac-
tor representation is a weakness as well as an advantage for factor analysis. It is a
weakness because it makes the meaning of factor loading arbitrary. It is an advan-
tage because it allows us to perform rotations to find common factors that have nice
interpretations. Because P is an orthogonal matrix, the transformation F∗ = P′F is a
rotation in the m-dimensional space.

8.8.1 Estimation

The orthogonal factor model in Eq. (8.39) can be estimated by two methods. The
first estimation method uses the principal component analysis of the previous sec-
tion. This method does not require the normality assumption of the data nor the
prespecification of the number of common factors. It applies to both the covariance
and correlation matrixes. But as mentioned in PCA, the solution is often an approxi-
mation. The second estimation method is the maximum likelihood method that uses
normal density and requires a prespecification for the number of common factors.

Principal Component Method
Again let (λ̂1, ê1), . . . , (λ̂k, êk) be pairs of the eigenvalues and eigenvectors of the
sample covariance matrix Σ̂r , where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k . Let m < k be the number
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of common factors. Then the matrix of factor loadings is given by

L̂ ≡ [�̂i j ] =
[√
λ̂1̂e1 |

√
λ̂2̂e2 | · · · |

√
λ̂m êm

]
. (8.42)

The estimated specific variances are the diagonal elements of the matrix Σ̂r − L̂L̂
′
.

That is, Ψ̂ = diag{�̂1, . . . , �̂k}, where �̂i = σ̂i i,r − ∑m
j=1 �̂

2
i j , where σ̂i i,r is the

(i, i)th element of Σ̂r . The communalities are estimated by

ĉ2
i = �̂2

i1 + · · · + �̂2
im .

The error matrix due to approximation is

Σ̂r − (̂LL̂
′ + Ψ̂).

Ideally, we would like this matrix to be close to zero. It can be shown that the sum
of squared elements of Σ̂r − (̂LL̂

′ + Ψ̂) is less than or equal to λ̂2
m+1 + · · · + λ̂2

k .
Therefore, the approximation error is bounded by the sum of squares of the neglected
eigenvalues.

From the solution in Eq. (8.42), the estimated factor loadings based on the prin-
cipal component method do not change as the number of common factors m is
increased.

Maximum Likelihood Method
If the common factors F and the specific factors ε are jointly normal, then r is mul-
tivariate normal with mean µ and covariance matrix Σr = LL′ + Ψ. The maximum
likelihood method can then be used to obtain estimates of L and Ψ under the con-
straint L′Ψ−1L = ∆, which is a diagonal matrix. Here µ is estimated by the sample
mean. For more details on this method, readers are referred to Johnson and Wichern
(1998). In using the maximum likelihood method, the number of common factors
must be given a priori.

8.8.2 Factor Rotation

As mentioned before, for any m × m orthogonal matrix P,

r − µ = LF + ε = L∗F∗ + ε,

where L∗ = LP and F∗ = P′F. In addition,

LL′ + Ψ = LPP′L′ + Ψ = L∗(L∗)′ + Ψ.

This result states that the communalities and the specific variances remain unchang-
ed under an orthogonal transformation. It is then reasonable to find an orthogonal
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matrix P to transform the factor model so that the common factors have nice inter-
pretations. Such a transformation is equivalent to rotating the common factors in the
m-dimensional space. In fact, there are infinite possible factor rotations available.
Kaiser (1958) proposes a varimax criterion to select the rotation that works well in
many applications. Denote the rotated matrix of factor loadings by L∗ = [�∗i j ] and
the i th communality by c2

i . Define �̃∗i j = �∗i j/ci to be the rotated coefficients scaled
by the (positive) square root of communalities. The varimax procedure selects the
orthogonal matrix P that maximizes the quantity

V = 1

k

m∑
j=1

 k∑
i=1

(�̃∗i j )
4 − 1

k

(
k∑

i=1

�̃∗2
i j

)2
 .

This complicated expression has a simple interpretation. Maximizing V corresponds
to spreading out the squares of the loadings on each factor as much as possible.
Consequently, the procedure is to find groups of large and negligible coefficients
in any column of the rotated matrix of factor loadings. In a real application, factor
rotation is used to aid the interpretations of common factors. It may be helpful in
some applications, but not so in others.

8.8.3 Applications

Given the data {rt } of asset returns, the factor analysis enables us to search for com-
mon factors that explain the variabilities of the returns. Since factor analysis assumes
no serial correlations in the data, one should check the validity of this assumption
before using factor analysis. The multivariate Portmanteau statistics can be used
for this purpose. If serial correlations are found, one can build a VARMA model
to remove the dynamic dependence in the data and apply the factor analysis to the
residual series. For many returns series, the correlation matrix of the residuals of a
linear model is often very close to the correlation matrix of the original data. In this
case, the effect of dynamic dependence on factor analysis is negligible.

Example 8.8. Consider again the monthly log stock returns of IBM, Hewlett-
Parkard, Intel, Merrill Lynch, and Morgan Stanley Dean Witter used in Example 8.7.
To check the assumption of no serial correlations, we compute the Portmanteau
statistics and obtain Q5(1) = 34.28, Q5(4) = 114.30, and Q5(8) = 216.78. Com-
pared with chi-squared distributions with 25, 100, and 200 degrees of freedom, the
p values of these test statistics are 0.102, 0.156, and 0.198, respectively. Therefore,
the assumption of no serial correlations cannot be rejected even at the 10% level.

Table 8.9 shows the results of factor analysis based on the correlation matrix using
both the principal component and maximum likelihood methods. We assume that the
number of common factors is 2, which is reasonable according to the principal com-
ponent analysis of Example 8.7. From the table, the factor analysis reveals several
interesting findings:
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Table 8.9. Factor Analysis of the Monthly Log Stock Returns of IBM,
Hewlett-Packard, Intel, Merrill Lynch, and Morgan Stanley Dean Witter.
The Returns Include Dividends and Are from January 1990 to December
1999. The Analysis Is Based on the Sample Cross-Correlation Matrix and
Assumes Two Common Factors.

(a) The principal component method

Estimates of Rotated
factor loadings factor loadings Communalities

Variable f1 f2 f ∗
1 f ∗

2 1 −�i

IBM 0.536 0.561 0.011 0.776 0.602
HWP 0.744 0.335 0.317 0.752 0.665
INTC 0.607 0.433 0.151 0.730 0.556
MER 0.788 −0.515 0.928 0.158 0.887
MWD 0.791 −0.514 0.930 0.161 0.891

Variance 2.4563 1.1448 1.8502 1.7509 3.6011

Proportion 0.491 0.229 0.370 0.350 0.720

(b) The maximum likelihood method

Estimates of Rotated
factor loadings factor loadings Communalities

Variable f1 f2 f ∗
1 f ∗

2 1 −�i

IBM 0.191 0.496 0.087 0.524 0.282
HWP 0.394 0.689 0.247 0.755 0.630
INTC 0.250 0.511 0.141 0.551 0.323
MER 0.800 0.072 0.769 0.232 0.645
MWD 0.994 −0.015 0.976 0.186 0.988

Variance 1.8813 0.9866 1.6324 1.2355 2.8679

Proportion 0.376 0.197 0.326 0.247 0.574

• The two factors identified by the principal component method explain more
variability than those identified by the maximum likelihood method.

• Based on the rotated factor loadings, the two estimation methods identify essen-
tially the same two common factors for the data. The financial stocks (Mer-
rill Lynch and Morgan Stanley Dean Witter) load heavily on the first factor,
whereas the technology stocks (IBM, Hewlett-Packard, and Intel) load highly
on the second factor. These two rotated factors jointly differentiate the industrial
sectors.

• In this particular instance, the varimax rotation does not change much the two
factors identified by the maximum likelihood method. Yet the first unrotated
factor identified by the principal component method was destroyed by the rota-
tion. This is not surprising in view of the idea behind the varimax criterion.

• The specific variances of IBM and Intel stock returns are relatively large based
on the maximum likelihood method, indicating that these two stocks have their
own features that are worth further investigation.
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Example 8.9. In this example, we consider the monthly log returns of U.S.
bond indexes with maturities in 30 years, 20 years, 10 years, 5 years, and 1 year.
The data are described in Example 8.2, but have been transformed into log returns.
There are 696 observations. As shown in Example 8.2, there is serial dependence
in the data. However, removing serial dependence by fitting a VARMA(2, 1) model
has hardly any effects on the concurrent correlation matrix. As a matter of fact, the
correlation matrixes before and after fitting a VARMA(2, 1) model are

ρ̂o =


1.0
.98 1.0
.92 .91 1.0
.85 .86 .90 1.0
.63 .64 .67 .81 1.0

 , ρ̂ =


1.0
.98 1.0
.92 .92 1.0
.85 .86 .90 1.0
.66 .67 .71 .84 1.0

 ,

Table 8.10. Factor Analysis of the Monthly Log Returns of U.S. Bond
Indexes With Maturities in 30 Years, 20 Years, 10 Years, 5 Years, and 1
Year. The Data Are from January 1942 to December 1999. The Analysis Is
Based on the Sample Cross-Correlation Matrix and Assumes Two Common
Factors.

(a) The principal component method

Estimates of Rotated
factor loadings factor loadings Communalities

Variable f1 f2 f ∗
1 f ∗

2 1 −�i

30 years 0.952 0.253 0.927 0.333 0.970
20 years 0.954 0.240 0.922 0.345 0.968
10 years 0.956 0.140 0.866 0.429 0.934
5 years 0.955 −0.142 0.704 0.660 0.931
1 year 0.800 −0.585 0.325 0.936 0.982

Variance 4.2812 0.5039 3.0594 1.7256 4.7851

Proportion 0.856 0.101 0.612 0.345 0.957

(b) The maximum likelihood method

Estimates of Rotated
factor loadings factor loadings Communalities

Variable f1 f2 f ∗
1 f ∗

2 1 −�i

30 years 0.849 −0.513 0.895 0.430 0.985
20 years 0.857 −0.486 0.876 0.451 0.970
10 years 0.896 −0.303 0.744 0.584 0.895
5 years 1.000 0.000 0.547 0.837 1.000
1 year 0.813 0.123 0.342 0.747 0.675

Variance 3.91783 0.6074 2.5378 1.9874 4.5252

Proportion 0.784 0.121 0.508 0.397 0.905
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where ρ̂o is the correlation matrix of the original log returns. Therefore, we apply
factor analysis directly to the return series.

Table 8.10 shows the results of factor analysis of the data. For both estimation
methods, the first two common factors explain more than 90% of the total variability
of the data. Indeed, the high communalities indicate that the specific variances are
very small for the five bond index returns. Because the results of the two methods are
close, we only discuss that of the principal component method. The unrotated factor
loadings indicate that (a) all five return series load roughly equally on the first factor,
and (b) the loadings on the second factor are positively correlated with the time to
maturity. Therefore, the first common factor represents the general U.S. bond returns,
and the second factor shows the “time-to-maturity” effect. Furthermore, the loadings
of the second factor sum approximately to zero. Therefore, this common factor can
also be interpreted as the contrast between long-term and short-term bonds. Here a
long-term bond means one with maturity 10 years or longer. For the rotated factors,
the loadings are also interesting. The loadings for the first rotated factor are propor-
tional to the time to maturity, whereas the loadings of the second factor are inversely
proportional to the time to maturity.

Remark: The factor analyses of this section are carried out using the Minitab
computer program.

APPENDIX A. REVIEW OF VECTORS AND MATRIXES

In this appendix, we briefly review some algebra and properties of vectors and
matrixes. No proofs are given as they can be found in standard textbooks on matrixes
(e.g., Graybill, 1969).

A m × n real-valued matrix is an m by n array of real numbers. For example,

A =
[

2 5 8
−1 3 4

]
is a 2 × 3 matrix. This matrix has two rows and three columns. In general, an m × n
matrix is written as

A ≡ [ai j ] =


a11 a12 · · · a1,n−1 a1n

a21 a22 · · · a2,n−1 a2n
...

...
...

...

am1 am2 · · · am,n−1 amn

 . (8.43)

The positive integers m and n are the row dimension and column dimension of A. The
real number ai j is referred to as the (i, j)th element of A. In particular, the elements
aii are the diagonal elements of the matrix.

A m × 1 matrix forms a m-dimensional column vector, and a 1 × n matrix is an
n-dimensional row vector. In the literature, a vector is often meant to be a column
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vector. If m = n, then the matrix is a square matrix. If ai j = 0 for i �= j and m = n,
then the matrix A is a diagonal matrix. If ai j = 0 for i �= j and aii = 1 for all i , then
A is the m × m identity matrix, which is commonly denoted by Im or simply I if the
dimension is clear.

The n × m matrix

A′ =


a11 a21 · · · am−1,1 am1
a12 a22 · · · am−1,2 am2
...

...
...

...

a1n a2n · · · am−1,n amn


is the transpose of the matrix A. For example,2 −1

5 3
8 4

 is the transpose of

[
2 5 8

−1 3 4

]
.

We use the notation A′ = [a′
i j ] to denote the transpose of A. From the definition,

a′
i j = a ji and (A′)′ = A. If A′ = A, then A is a symmetric matrix.

Basic Operations

Suppose that A = [ai j ]m×n and C = [ci j ]p×q are two matrixes with dimensions
given in the subscript. Let b be a real number. Some basic matrix operations are
defined next:

• Addition: A + C = [ai j + ci j ]m×n if m = p and n = q;

• Subtraction: A − C = [ai j − ci j ]m×n if m = p and n = q;

• Scalar multiplication: bA = [bai j ]m×n; and

• Multiplication: AC = [∑n
v=1 aivcv j ]m×q provided that n = p.

When the dimensions of matrixes satisfy the condition for multiplication to take
place, the two matrixes are said to be conformable. An example of matrix multipli-
cation is[

2 1
1 1

] [
1 2 3

−1 2 −4

]
=
[

2 · 1 − 1 · 1 2 · 2 + 1 · 2 2 · 3 − 1 · 4
1 · 1 − 1 · 1 1 · 2 + 1 · 2 1 · 3 − 1 · 4

]
=
[

1 6 2
0 4 −1

]
.

Important rules of matrix operations include (a) (AC)′ = C′A′ and (b) AC �= CA in
general.
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Inverse, Trace, Eigenvalue, and Eigenvector

A square matrix Am×m is nonsingular or invertible if there exists a unique matrix
Cm×m such that AC = CA = Im , the m × m identity matrix. In this case, C is called
the inverse matrix of A and is denoted by C = A−1.

The trace of Am×m is the sum of its diagonal elements [i.e., tr(A) = ∑m
i=1 aii ]. It

is easy to see that (a) tr(A+C) = tr(A)+ tr(C), (b) tr(A) = tr(A′), and (c) tr(AC)
= tr(CA) provided that the two matrixes are conformable.

A number λ and a m ×1 vector b, possibly complex-valued, are a right eigenvalue
and eigenvector pair of the matrix A if Ab = λb. There are m possible eigenvalues
for the matrix A. For a real-valued matrix A, complex eigenvalues occur in con-
jugated pairs. The matrix A is nonsingular if and only if all of its eigenvalues are
nonzero. Denote the eigenvalues by {λi | i = 1, . . . ,m}, we have tr(A) =

∑m
i=1 λi .

In addition, the determinant of the matrix A can be defined as | A | = ∏m
i=1 λi . For a

general definition of determinant of a matrix, see a standard textbook on matrix (e.g.,
Graybill, 1969).

Finally, the rank of the matrix Am×n is the number of nonzero eigenvalues of the
symmetric matrix AA′. Also, for a nonsingular matrix A, (A−1)′ = (A′)−1.

Positive Definite Matrix

A square matrix A (m × m) is a positive definite matrix if (a) A is symmetric, and
(b) all eigenvalues of A are positive. Alternatively, A is a positive definite matrix if
for any nonzero m-dimensional vector b, we have b′Ab > 0.

Useful properties of a positive definite matrix A include (a) all eigenvalues of A
are real and positive, and (b) the matrix can be decomposed as

A = PΛP′,

where Λ is a diagonal matrix consisting of all eigenvalues of A and P is a m ×
m matrix consisting of the m right eigenvectors of A. It is common to write the
eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λm and the eigenvectors as e1, . . . , em such that
Aei = λi ei and e′

i ei = 1. In addition, these eigenvectors are orthogonal to each
other—namely, e′

i e j = 0 if i �= j—if the eigenvalues are distinct. The matrix P is an
orthogonal matrix and the decomposition is referred to as the spectral decomposition
of the matrix A. Consider, for example, the simple 2 × 2 matrix

Σ =
[

2 1
1 2

]
,

which is positive definite. Simple calculations show that[
2 1
1 2

] [
1
1

]
= 3

[
1
1

]
,

[
2 1
1 2

] [
1

−1

]
=
[

1
−1

]
.
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Therefore, 3 and 1 are eigenvalues of Σ with normalized eigenvectors ( 1√
2
, 1√

2
)′ and

( 1√
2
,− 1√

2
)′, respectively. It is easy to verify that the spectral decomposition holds—

that is,  1√
2

1√
2

1√
2

−1√
2

[2 1
1 2

] 1√
2

1√
2

1√
2

−1√
2

 =
[

3 0
0 1

]
.

For a symmetric matrix A, there exists a lower triangular matrix L with diagonal
elements being 1 and a diagonal matrix G such that A = LGL′; see Chapter 1 of
Strang (1980). If A is positive definite, then the diagonal elements of G are positive.
In this case,

A = L
√

G
√

GL′ = (L
√

G )(L
√

G )′,

where L
√

G is again a lower triangular matrix and the square root is taking element
by element. Such a decomposition is called the Cholesky Decomposition of A. This
decomposition shows that a positive definite matrix A can be diagonalized as

L−1A(L′)−1 = L−1A(L−1)′ = G.

Since L is a lower triangular matrix with unit diagonal elements, L−1 is also lower
triangular matrix with unit diagonal elements. Consider again the prior 2 × 2 matrix
Σ. It is easy to verify that

L =
[

1.0 0.0
0.5 1.0

]
and G =

[
2.0 0.0
0.0 1.5

]
satisfy that Σ = LGL′. In addition,

L−1 =
[

1.0 0.0
−0.5 1.0

]
and L−1Σ(L−1)′ = G.

Vectorization and Kronecker Product

Writing a m × n matrix A in its columns as A = [a1, . . . , an], we define the stacking
operation as vec(A) = (a′

1, a′
2, . . . , a′

m)
′, which is a mn × 1 vector. For two matrixes

Am×n and Cp×q , the Kronecker product between A and C is

A ⊗ C =


a11C a12C · · · a1nC
a21C a22C · · · a2nC
...

...
...

am1C am2C · · · amnC


mp×nq

.
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For example, assume that

A =
[

2 1
−1 3

]
, C =

[
4 −1 3

−2 5 2

]
.

Then vec(A) = (2,−1, 1, 3)′, vec(C) = (4,−2,−1, 5, 3, 2)′, and

A ⊗ C =


8 −2 6 4 −1 3

−4 10 4 −2 5 2
−4 1 −3 12 −3 9

2 −5 −2 −6 15 6

 .
Assuming that the dimensions are appropriate, then we have the following useful
properties for the two operators:

1. A ⊗ C �= C ⊗ A in general;

2. (A ⊗ C)′ = A′ ⊗ C′;
3. A ⊗ (C + D) = A ⊗ C + A ⊗ D;

4. (A ⊗ C)(F ⊗ G) = (AF)⊗ (CG);

5. If A and C are invertible, then (A ⊗ C)−1 = A−1 ⊗ C−1;

6. For square matrixes A and C, tr(A ⊗ C) = tr(A)tr(C);

7. vec(A + C) = vec(A)+ vec(C);

8. vec(ABC) = (C′ ⊗ A)vec(B);

9. tr(AC) = vec(C′)′vec(A) = vec(A′)′vec(C);

10. and

tr(ABC) = vec(A′)′(C′ ⊗ I)vec(B) = vec(A′)′(I ⊗ B)vec(C)

= vec(B′)′(A′ ⊗ I)vec(C) = vec(B′)′(I ⊗ C)vec(A)

= vec(C′)′(B′ ⊗ I)vec(A) = vec(C′)′(I ⊗ A)vec(B).

In multivariate statistical analysis, we often deal with symmetric matrixes. It is
therefore convenient to generalize the stacking operation to the half-stacking oper-
ation, which consists of elements on or below the main diagonal. Specifically, for a
symmetric square matrix A = [ai j ]k×k , define

vech(A) = (a′
1., a′

2∗, . . . , a′
k∗)′,

where a1. is the first column of A, and ai∗ = (aii , ai+1,i , . . . , aki )
′ is a (k − i + 1)-

dimensional vector. The dimension of vech(A) is k(k + 1)/2. For example, suppose
that k = 3. Then we have vech(A) = (a11, a21, a31, a22, a32, a33)

′, which is a six-
dimensional vector.
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APPENDIX B. MULTIVARIATE NORMAL DISTRIBUTIONS

A k-dimensional random vector x = (x1, . . . , xk)
′ follows a multivariate normal

distribution with mean µ = (µ1, . . . , µk)
′ and positive definite covariance matrix

Σ = [σi j ] if its probability density function (pdf) is

f (x | µ,Σ) = 1

(2π)k/2 | Σ |1/2 exp

[
−1

2
(x − µ)′Σ−1(x − µ)

]
. (8.44)

We use the notation x ∼ Nk(µ,Σ) to denote that x follows such a distribution. This
normal distribution plays an important role in multivariate statistical analysis and it
has several nice properties. Here we only consider those properties that are relevant to
our study. Interested readers are referred to Johnson and Wichern (1998) for details.

To gain insight into multivariate normal distributions, consider the bivariate case
(i.e., k = 2). In this case, we have

Σ =
[
σ11 σ12
σ12 σ22

]
, Σ−1 = 1

σ11σ22 − σ 2
12

[
σ22 −σ12

−σ12 σ11

]
.

Using the correlation coefficient ρ = σ12/(σ1σ2), where σi = √
σi i is the standard

deviation of xi , we have σ12 = ρ
√
σ11σ22 and |Σ | = σ11σ22(1 − ρ2). The pdf of x

then becomes

f (x1, x2 | µ,Σ) = 1

2πσ1σ2

√
1 − ρ2

exp

[
− 1

2(1 − ρ2)
[Q(x,µ,Σ)]

]
,

where

Q(x,µ,Σ) =
(

x1 − µ1

σ1

)2

+
(

x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
.

Chapter 4 of Johnson and Wichern (1998) contains some plots of this pdf function.
Let c = (c1, . . . , ck)

′ be a nonzero k-dimensional vector. Partition the random
vector as x = (x′

1, x′
2)

′, where x1 = (x1, . . . , x p)
′ and x2 = (x p+1, . . . , xk)

′ with
1 ≤ p < k. Also partition µ and Σ accordingly as[

x1
x2

]
∼ N

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
.

Some properties of x are as follows:

1. c′x ∼ N (c′µ, c′Σc). That is, any nonzero linear combination of x is univariate
normal. The inverse of this property also holds. Specifically, if c′x is univariate
normal for any nonzero vector c, then x is multivariate normal.

2. The marginal distribution of xi is normal. In fact, xi ∼ Nki (µi ,Σi i ) for i = 1
and 2, where k1 = p and k2 = k − p.
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3. Σ12 = 0 if and only if x1 and x2 are independent.
4. The random variable y = (x −µ)′Σ−1(x −µ) follows a chi-squared distribu-

tion with m degrees of freedom.
5. The conditional distribution of x1 given x2 = b is also normally distributed as

(x1 | x2 = b) ∼ Np[µ1 + Σ12Σ−1
22 (b − µ2),Σ11 − Σ12Σ−1

22 Σ21].

The last property is useful in many scientific areas. For instance, it forms the basis
for time series forecasting under the normality assumption and for recursive least
squares estimation.

EXERCISES

1. Consider the monthly log stock returns, in percentages and including dividends,
of Merck & Company, Johnson & Johnson, General Electric, General Motors,
Ford Motor Company, and value-weighted index from January 1960 to December
1999; see the file “m-mrk2vw.dat,” which has six columns in the order listed
before.
(a) Compute the sample mean, covariance matrix, and correlation matrix of the

data.
(b) Test the hypothesis H0 : ρ1 = · · · = ρ6 = 0, where ρi is the lag-i cross-

correlation matrix of the data. Draw conclusion based on the 5% significance
level.

(c) Is there any lead-lag relationship among the six return series?
(d) Perform a principal component analysis of the data using the sample covari-

ance matrix.
(e) Perform a principal component analysis of the data using the sample correla-

tion matrix.
(f) Perform a factor analysis on the data. Identify the number of common factors.

Obtain estimates of factor loadings using both the principal component and
maximum likelihood methods.

2. The Federal Reserve Bank of St Louis publishes selected interest rates and U.S.
financial data on its Web site:

http://www.stls.frb.org/fred/index.html

Consider the monthly 1-year and 10-year Treasury constant maturity rates from
April 1953 to October 2000 for 571 observations; see the file “m-gs1n10.dat.”
The rates are in percentages.
(a) Let ct = rt − rt−1 be the change series of the monthly interest rate rt . Build

a bivariate autoregressive model for the two change series. Discuss the impli-
cations of the model. Transform the model into a structural form.
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(b) Build a bivariate moving-average model for the two change series. Discuss
the implications of the model and compare it with the bivariate AR model
built earlier.

(c) Are the two monthly interest rate series co-integrated?

3. Again consider the monthly 1-year and 10-year Treasury constant maturity rates
from April 1953 to October 2000. Consider the log series of the data and build a
VARMA model for the series. Discuss the implications of the model obtained.

4. Again consider the monthly 1-year and 10-year Treasury constant maturity rates
from April 1953 to October 2000. Are the two interest rate series threshold-
cointegrated? Use the interest spread st = r10,t − r1,t as the threshold variable,
where rit is the i-year Treasury constant maturity rate. If they are threshold-
cointegrated, build a multivariate threshold model for the two series.

5. The bivariate AR(4) model xt −Φ4xt−4 = φ0+at is a special seasonal model with
periodicity 4, where {at } is a sequence of independent and identically distributed
normal random vectors with mean zero and covariance matrix Σ. Such a seasonal
model may be useful in studying quarterly earning of a company. (a) Assume
that xt is weakly stationary. Derive the mean vector and covariance matrix of
xt . (b) Derive the necessary and sufficient condition of weak stationarity for xt .
(c) Show that Γ� = Φ4Γ�−4 for � > 0, where Γ� is the lag-� autocovariance
matrix of xt .

6. The bivariate MA(4) model xt = at −Θ4at−4 is another seasonal model with peri-
odicity 4, where {at } is a sequence of independent and identically distributed nor-
mal random vectors with mean zero and covariance matrix Σ. Derive the covari-
ance matrixes Γ� of xt for � = 0, . . . , 5.
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Multivariate Volatility Models and
Their Applications

In this chapter, we generalize the univariate volatility models of Chapter 3 to the
multivariate case and discuss some methods for simplifying the dynamic relation-
ships between volatility processes of multiple asset returns. Multivariate volatilities
have many important financial applications. They play an important role in portfolio
selection and asset allocation, and they can be used to compute the Value at Risk of
a financial position consisting of multiple assets.

Consider a multivariate return series {rt }. We adopt the same approach as the
univariate case by rewriting the series as

rt = µt + at ,

where µt = E(rt | Ft−1) is the conditional expectation of rt given the past informa-
tion Ft−1, and at = (a1t , . . . , akt )

′ is the shock, or innovation, of the series at time
t . The µt process is assumed to follow the conditional expectation of a multivariate
time series model of Chapter 8. For most return series, it suffices to employ a simple
vector ARMA structure for µt —that is,

µt = φ0 +
p∑

i=1

Φi rt−i −
q∑

i=1

Θi at−i , (9.1)

where p and q are non-negative integers. Explanatory variables can be added to the
prior equation if necessary. We refer to Eq. (9.1) as the mean equation of rt .

The conditional covariance matrix of at given Ft−1 is a k × k positive-definite
matrix Σt defined by Σt = Cov(at | Ft−1). Multivariate volatility modeling is con-
cerned with the time evolution of Σt . We refer to a model for Σt as a volatility model
for the return series rt .

There are many ways to generalize univariate volatility models to the multivariate
case, but the curse of dimensionality quickly becomes a major obstacle in appli-
cations because there are k(k + 1)/2 quantities in Σt for a k-dimensional return
series. To illustrate, there are 15 conditional variances and covariances in Σt for a
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five-dimensional return series. The goal of this chapter is to introduce some rela-
tively simple multivariate volatility models that are useful, yet remain manageable in
real application. In particular, we discuss some models that allow for time-varying
correlation coefficients between asset returns. Time-varying correlations are useful
in finance. For example, they can be used to estimate the time-varying beta of the
market model of a return series.

We begin by introducing two methods to reparameterize Σt for volatility model-
ing in Section 9.1. The reparameterization based on the Cholesky decomposition is
found to be very useful. We then study volatility models for bivariate returns in Sec-
tion 9.2 using the GARCH model as an example. In this particular case, the volatility
model can be bivariate or three-dimensional. Section 9.3 is concerned with volatility
models for higher dimensional returns, and Section 9.4 addresses the issue of dimen-
sion reduction. We demonstrate some applications of multivariate volatility models
in Section 9.5. Finally, Section 9.6 gives a multivariate student-t distribution useful
for volatility modeling.

9.1 REPARAMETERIZATION

An important step in multivariate volatility modeling is to reparameterize Σt by mak-
ing use of its symmetric property. We consider two reparameterizations of Σt .

9.1.1 Use of Correlations

The first reparameterization of Σt is to use the conditional correlation coefficients
and variances of at . Specifically, we write Σt as

Σt ≡ [σi j,t ] = Dtρt Dt , (9.2)

where ρt is the conditional correlation matrix of at , and Dt is a k × k diagonal
matrix consisting of the conditional standard deviations of elements of at (i.e., Dt =
diag{√σ11,t , . . . ,

√
σkk,t }).

Because ρt is symmetric with unit diagonal elements, the time evolution of Σt

is governed by that of the conditional variances σi i,t and the elements ρi j,t of ρt ,
where j < i and 1 ≤ i ≤ k. Therefore, to model the volatility of at , it suffices
to consider the conditional variances and correlation coefficients of ait . Define the
k(k + 1)/2-dimensional vector

Ξt = (σ11,t , . . . , σkk,t ,�
′
t )

′, (9.3)

where �t is a k(k − 1)/2-dimensional vector obtained by stacking columns of the
correlation matrix ρt , but using only elements below the main diagonal. Specifically,
for a k-dimensional return series,

�t = (ρ21,t , . . . , ρk1,t | ρ32,t , . . . , ρk2,t | · · · | ρk,k−1,t )
′.
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To illustrate, for k = 2, we have �t = ρ21,t and

Ξt = (σ11,t , σ22,t , ρ21,t )
′, (9.4)

which is a 3-dimensional vector, and for k = 3, we have �t = (ρ21,t , ρ31,t , ρ32,t )
′

and

Ξt = (σ11,t , σ22,t , σ33,t , ρ21,t , ρ31,t , ρ32,t )
′, (9.5)

which is a six-dimensional vector.
If at is a bivariate normal random variable, then Ξt is given in Eq. (9.4) and the

conditional density function of at given Ft−1 is

f (a1t , a2t | Ξt ) = 1

2π
√
σ11,tσ22,t (1 − ρ2

21,t )

exp

[
− Q(a1t , a2t ,Ξt )

2(1 − ρ2
21,t )

]
,

where

Q(a1t , a2t ,Ξt ) = a2
1t

σ11,t
+ a2

2t

σ22,t
− 2ρ21,t a1t a2t√

σ11,tσ22,t
.

The log probability density function of at relevant to the maximum likelihood esti-
mation is


(a1t , a2t ,Ξt ) = −1

2

{
ln[σ11,tσ22,t (1 − ρ2

21,t )]

+ 1

1 − ρ2
21,t

(
a2

1t

σ11,t
+ a2

2t

σ22,t
− 2ρ21,t a1t a2t√

σ11,tσ22,t

)}
. (9.6)

This reparameterization is useful because it models covariances and correlations
directly. Yet the approach has several weaknesses. First, the likelihood function
becomes complicated when k ≥ 3. Second, the approach requires a constrained
maximization in estimation to ensure the positive definiteness of Σt . The constraint
becomes complicated when k is large.

9.1.2 Cholesky Decomposition

The second reparameterization of Σt is to use the Cholesky decomposition; see
Appendix A of Chapter 8. This approach has some advantages in estimation as it
requires no parameter constraints for the positive definiteness of Σt ; see Pourahmadi
(1999). In addition, the reparameterization is an orthogonal transformation so that
the resulting likelihood function is extremely simple. Details of the transformation
are given next.
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Because Σt is positive definite, there exist a lower triangular matrix Lt with unit
diagonal elements and a diagonal matrix Gt with positive diagonal elements such
that

Σt = Lt Gt L′
t . (9.7)

This is the well-known Cholesky decomposition of Σt . A nice feature of the decom-
position is that the lower off-diagonal elements of Lt and the diagonal elements of Gt

have nice interpretations. We demonstrate the decomposition by studying carefully
the bivariate and three-dimensional cases. For the bivariate case, we have

Σt =
[
σ11,t σ21,t
σ21,t σ22,t

]
, Lt =

[
1 0
q21,t 1

]
, Gt =

[
g11,t 0

0 g22,t

]
,

where gii,t > 0 for i = 1 and 2. Using Eq. (9.7), we have

Σt =
[
σ11,t σ12,t
σ12,t σ22,t

]
=
[

g11,t q21,t g11,t

q21,t g11,t g22,t + q2
21,t g11,t

]
.

Equating elements of the previous matrix equation, we obtain

σ11,t = g11,t , σ21,t = q21,t g11,t , σ22,t = g22,t + q2
21,t g11,t . (9.8)

Solving the prior equations, we have

g11,t = σ11,t , q21,t = σ21,t

σ11,t
, g22,t = σ22,t − σ 2

21,t

σ11,t
. (9.9)

However, consider the simple conditional linear regression

a2t = βa1t + b2t , (9.10)

where b2t denotes the error term. From the well-known least squares theory, we have

β = Cov(a1t , a2t )

Var(a1t )
= σ21,t

σ11,t
,

Var(b2t ) = Var(a2t )− β2Var(a1t ) = σ22,t − σ 2
21,t

σ11,t
.

Furthermore, the error term b2t is uncorrelated with the regressor a1t . Consequently,
using Eq. (9.9), we obtain

g11,t = σ11,t , q21,t = β, g22,t = Var(b2t ), b2t⊥a1t ,
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where ⊥ denotes no correlation. In summary, the Cholesky decomposition of the
2 × 2 matrix Σt amounts to performing an orthogonal transformation from at to
bt = (b1t , b2t )

′ such that

b1t = a1t and b2t = a2t − q21,t a1t ,

where q21,t = β is obtained by the linear regression (9.10) and Cov(bt ) is a diagonal
matrix with diagonal elements gii,t . The transformed quantities q21,t and gii,t can be
interpreted as follows:

1. The first diagonal element of Gt is simply the variance of a1t .
2. The second diagonal element of Gt is the residual variance of the simple linear

regression in Eq. (9.10).
3. The element q21,t of the lower triangular matrix Lt is the coefficient β of the

regression in Eq. (9.10).

The prior properties continue to hold for the higher dimensional case. For example,
consider the three-dimensional case in which

Lt =
1 0 0

q21,t 1 0
q31,t q32,t 1

 , Gt =
g11,t 0 0

0 g22,t 0
0 0 g3,t

 .
From the decomposition in Eq. (9.7), we haveσ11,t σ21,t σ31,t
σ21,t σ22,t σ32,t
σ31,t σ32,t σ33,t

 =

g11,t q21,t g11,t q31,t g11,t

q21,t g22,t q2
21,t g11,t + g22,t q31,t q21,t g11,t + q32,t g22,t

q31,t g11,t q31,t q21,t g11,t + q32,t g22,t q2
31,t g11,t + q2

32,t g22,t + g33,t

 .
Equating elements of the prior matrix equation, we obtain

σ11,t = g11,t , σ21,t = q21,t g11,t , σ22,t = q2
21,t g11,t + g22,t , σ31,t = q31,t g11,t ,

σ32,t = q31,t q21,t g11,t + q32,t g22,t , σ33,t = q2
31,t g11,t + q2

32,t g22,t + g33,t

or, equivalently,

g11,t = σ11,t , q21,t = σ21,t

σ11,t
, g22,t = σ22,t − q2

21,t g11,t ,

q31,t = σ31,t

σ11,t
, q32,t = 1

g22,t

(
σ32,t − σ31,tσ21,t

σ11,t

)
,

g33,t = σ33,t − q2
31,t g11,t − q2

32,t g22,t .
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These quantities look complicated, but they are simply the coefficients and residual
variances of the orthogonal transformation

b1t = a1t

b2t = a2t − β21b1t

b3t = a3t − β31b1t − β32b2t ,

where βi j are the coefficients of least squares regressions

a2t = β21b1t + b2t

a3t = β31b1t + β32b2t + b3t .

In other words, we have qi j,t = βi j , gii,t = Var(bit ) and bit⊥b jt for i �= j .
Based on the prior discussion, using Cholesky decomposition amounts to doing

an orthogonal transformation from at to bt , where b1t = a1t , and bit , for 1 < i ≤ k,
is defined recursively by the least squares regression

ait = qi1,t b1t + qi2,t b2t + · · · + qi(i−1),t b(i−1)t + bit , (9.11)

where qi j,t is the (i, j)th element of the lower triangular matrix Lt for 1 ≤ j < i .
We can write this transformation as

bt = L−1
t at , or at = Lt bt , (9.12)

where, as mentioned before, L−1
t is also a lower triangular matrix with unit diagonal

elements. The covariance matrix of bt is the diagonal matrix Gt of the Cholesky
decomposition because

Cov(bt ) = L−1
t Σt (L−1

t )′ = Gt .

The parameter vector relevant to volatility modeling under such a transformation
becomes

Ξt = (g11,t , . . . , gkk,t , q21,t , q31,t , q32,t , . . . , qk1,t , . . . , qk(k−1),t )
′, (9.13)

which is also a k(k + 1)/2-dimensional vector.
The previous orthogonal transformation also dramatically simplifies the likeli-

hood function of the data. Using the fact that | Lt | = 1, we have

|Σt | = | Lt Gt L′
t | = | Gt | =

k∏
i=1

gii,t . (9.14)

If the conditional distribution of at given the past information is multivariate normal
N (0,Σt ), then the conditional distribution of the transformed series bt is multivariate
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normal N (0,Gt ), and the log likelihood function of the data becomes extremely
simple. Indeed, we have the log probability density of at as


(at ,Σt ) = 
(bt ,Ξt ) = −1

2

k∑
i=1

[
ln(gii,t )+ b2

i t

gii,t

]
, (9.15)

where for simplicity the constant term is omitted and gii,t is the variance of bit .
Using the Cholesky decomposition to reparameterize Σt has several advantages.

First, from Eq. (9.14), Σt is positive definite if gii,t > 0 for all i . Consequently, the
positive definite constraint of Σt can easily be achieved by modeling ln(gii,t ) instead
of gii,t . Second, elements of the parameter vector Ξt in Eq. (9.13) have nice inter-
pretations. They are the coefficients and residual variances of multiple linear regres-
sions that orthogonalize the shocks to the returns. Third, the correlation coefficient
between a1t and a2t is

ρ21,t = σ21,t√
σ11,tσ22,t

= q21,t ×
√
σ11,t√
σ22,t

,

which is time-varying if q21,t �= ρ
√
σ22,t/

√
σ11,t where ρ is a constant. For example,

if q21,t = c �= 0, then ρ21,t = c
√
σ11,t/

√
σ22,t , which continues to be time-varying

provided that the variance ratio σ11,t/σ22,t is not a constant. This time-varying prop-
erty applies to other correlation coefficients when the dimension of rt is greater than
2 and is a major difference between the two approaches for reparameterizing Σt .

Using Eq. (9.11) and the orthogonality among the transformed shocks bit , we
obtain

σi i,t = Var(ait | Ft−1) =
i∑

v=1

q2
iv,t gvv,t , i = 1, . . . , k,

σi j,t = Cov(ait , a jt | Ft−1) =
j∑

v=1

qiv,t q jv,t gvv,t , j < i, i = 2, . . . , k,

where qvv,t = 1 for v = 1, . . . , k. These equations show the parameterization of Σt

under the Cholesky decomposition.

9.2 GARCH MODELS FOR BIVARIATE RETURNS

Since the same techniques can be used to generalize many univariate volatility mod-
els to the multivariate case, we focus our discussion on the multivariate GARCH
model. Other multivariate volatility models can also be used.

For a k-dimensional return series rt , a multivariate GARCH model uses “exact
equations” to describe the evolution of the k(k + 1)/2-dimensional vector Ξt over
time. By exact equation, we mean that the equation does not contain any stochastic
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shock. However, the exact equation may become complicated even in the simplest
case of k = 2 for which Ξt is three-dimensional. To keep the model simple, some
restrictions are often imposed on the equations.

9.2.1 Constant-Correlation Models

To keep the number of volatility equations low, Bollerslev (1990) considers the spe-
cial case in which the correlation coefficient ρ21,t = ρ21 is time invariant, where
| ρ21 | < 1. Under such an assumption, ρ21 is a constant parameter and the volatility
model consists of two equations for Ξ∗

t , which is defined as Ξ∗
t = (σ11,t , σ22,t )

′. A
GARCH(1, 1) model for Ξ∗

t becomes

Ξ∗
t = α0 +α1a2

t−1 + β1Ξ∗
t−1, (9.16)

where a2
t−1 = (a2

1,t−1, a2
2,t−1)

′, α0 is a two-dimensional positive vector, and α1 and
β1 are 2 × 2 non-negative definite matrixes. More specifically, the model can be
expressed in detail as[

σ11,t
σ22,t

]
=
[
α10
α20

]
+
[
α11 α12
α21 α22

] [
a2

1,t−1
a2

2,t−1

]
+
[
β11 β12
β21 β22

] [
σ11,t−1
σ22,t−1

]
, (9.17)

where αi0 > 0 for i = 1 and 2. Defining ηt = a2
t − Ξ∗

t , we can rewrite the prior
model as

a2
t = α0 + (α1 + β1)a2

t−1 + ηt − β1ηt−1,

which is a bivariate ARMA(1, 1) model for the a2
t process. This result is a direct

generalization of the univariate GARCH(1, 1) model of Chapter 3. Consequently,
some properties of model (9.17) are readily available from those of the bivariate
ARMA(1, 1) model of Chapter 8. In particular, we have the following results:

1. If all of the eigenvalues of α1 + β1 are positive, but less than 1, then the
bivariate ARMA(1, 1) model for a2

t is weakly stationary and, hence, E(a2
t )

exists. This implies that the shock process at of the returns has a positive-
definite unconditional covariance matrix. The unconditional variances of the
elements of at are (σ 2

1 , σ
2
2 )

′ = (I − α1 − β1)
−1φ0, and the unconditional

covariance between a1t and a2t is ρ21σ1σ2.

2. If α12 = β12 = 0, then the volatility of a1t does not depend on the past
volatility of a2t . Similarly, if α21 = β21 = 0, then the volatility of a2t does not
depend on the past volatility of a1t .

3. If both α1 and β1 are diagonal, then the model reduces to two univariate
GARCH(1, 1)models. In this case, the two volatility processes are not dynam-
ically related.
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4. Volatility forecasts of the model can be obtained by using forecasting methods
similar to those of a vector ARMA(1, 1) model; see the univariate case in
Chapter 3. The 1-step ahead volatility forecast at the forecast origin h is

Ξ∗
h(1) = α0 +α1a2

h + β1Ξ∗
h .

For the 
-step ahead forecast, we have

Ξ∗
h(
) = α0 + (α1 + β1)Ξ∗

h(
− 1), 
 > 1.

These forecasts are for the marginal volatilities of ait . The 
-step ahead fore-
cast of the covariance between a1t and a2t is ρ̂21[σ11,h(
)σ22,h(
)]0.5, where
ρ̂21 is the estimate of ρ21 and σi i,h(
) are the elements of Ξ∗

h(
).

Example 9.1. As an illustration, consider the daily log returns of the stock
market indexes for Hong Kong and Japan from January 1, 1996 to October 16, 1997
for 469 observations. The indexes are dollar denominated and the returns are in per-
centages. We select the sample period to avoid the effect of Asian financial crisis,
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Figure 9.1. Time plots of daily log returns in percentages of stock market indexes for Hong
Kong and Japan from January 1, 1996 to October 16, 1997: (a) the Hong Kong market, and
(b) the Japanese market.
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which hit the Hong Kong Market on October 17, 1997. The data are obtained from
Datastream. Figure 9.1 shows the time plots of the two index returns. Let r1t be the
index return for the Hong Kong stock market and r2t for the Japanese stock market.
If univariate GARCH models are entertained, we obtain the models

r1t = 0.137r1,t−1 + a1t , a1t = σ1tε1t ,

σ 2
1t = 0.164 + 0.142a2

1,t−1 + 0.765σ 2
1,t−1 (9.18)

r2t = a2t , a2t = σ2tε2t ,

σ 2
2t = 0.085 + 0.128a2

2,t−1 + 0.807σ 2
2,t−1, (9.19)

where all of the parameter estimates are highly significant except for the AR(1) coef-
ficient of the r1t series, which has a p value of 0.029. The Ljung–Box statistics of the
standardized residuals and their squared series of the prior two models fail to indicate
any model inadequacy. Figure 9.2 shows the estimated volatilities of the previous two
univariate GARCH(1, 1) models. The Hong Kong stock market appears to be more
volatile than the Japanese stock market, but the Japanese market exhibits an increas-
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Figure 9.2. Estimated volatilities for daily log returns in percentages of stock market indexes
for Hong Kong and Japan from January 1, 1996 to October 16, 1997: (a) the Hong Kong
market, and (b) the Japanese market. Univariate models are used.
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ing trend in volatility. The unconditional innovational variance of the Hong Kong
market is about 1.76 and that of the Japanese market is 1.31.

Turning to bivariate GARCH models, we obtain two models that fit the data well.
The mean equations of the first bivariate model are

r1t = −0.118r1,t−6 + a1t

r2t = a2t ,

where the standard error of the AR(6) coefficient is 0.044. The volatility equations
of the first model are

[
σ11,t
σ22,t

]
=


0.275
(0.079)
0.051
(0.014)

+


0.112 ·
(0.032)

· 0.091
(0.026)

[a2
1,t−1

a2
2,t−1

]

+


0.711 ·
(0.068)

· 0.869
(0.028)

[σ11,t−1
σ22,t−1

]
, (9.20)

where the numbers in parentheses are standard errors. The estimated correlation
coefficients between a1t and a2t is 0.226 with standard error 0.047.

Let ãt = (ã1t , ã2t )
′ be the standardized residuals, where ãi t = ait/

√
σi i,t . The

Ljung–Box statistics of ãt give Q(4) = 22.29(0.10) and Q(8) = 34.83(0.29),
where the number in parentheses denotes p value. Here the p values are based on
chi-squared distributions with 15 and 31 degrees of freedom, respectively, because
an AR(6) coefficient is used in the mean equation. The Ljung–Box statistics for the
ã2

t process give Q(4) = 9.54(0.85) and Q(8) = 18.58(0.96). Consequently, there
are no serial correlations or conditional heteroscedasticities in the bivariate standard-
ized residuals of model (9.20). The unconditional innovational variances of the two
residuals are 1.55 and 1.28, respectively, for the Hong Kong and Japanese markets.

The model in Eq. (9.20) shows two uncoupled volatility equations, indicating that
the volatilities of the two markets are not dynamically related, but they are con-
temporaneously correlated. We refer to the model as a bivariate diagonal constant-
correlation model.

The mean equations of the second bivariate GARCH model are

r1t = −0.143r1,t−6 + a1t

r2t = a2t ,

where the standard error of the AR(6) coefficient is 0.042, and the volatility equations
of the second model are
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[
σ11,t
σ22,t

]
=


0.378
(0.103)

·

+


0.108 ·
(0.030)

· 0.172
(0.035)

[a2
1,t−1

a2
2,t−1

]

+


· 0.865

(0.109)
0.321 0.869
(0.135) (0.028)

[σ11,t−1
σ22,t−1

]
, (9.21)

where the numbers in parentheses are standard errors. The estimated correla-
tion coefficient between a1t and a2t is 0.236 with standard error 0.045. Defin-
ing the standardized residuals as before, we obtain Q(4) = 24.22(0.06) and
Q(8) = 35.52(0.26) for the standardized residuals of the prior model and Q(4) =
17.45(0.29) and Q(8) = 24.55(0.79) for the squared standardized residuals. These
Ljung–Box statistics are insignificant at the 5% level, and hence the model in
Eq. (9.21) is also adequate. The unconditional innovational variances of the prior
model are 1.71 and 1.32, respectively, for the Hong Kong and Japanese markets.

In contrast with model (9.20), this second bivariate GARCH(1, 1) model shows
a feedback relationship between the two markets. It is then interesting to compare
the two volatility models. First, the unconditional innovational variances of model
(9.21) are closer to those of the univariate models in Eqs. (9.18) and (9.19). Second,
Figure 9.3 shows the fitted volatility processes of model (9.20), whereas Figure 9.4
shows those of model (9.21). Because model (9.20) implies no dynamic volatility
dependence between the two markets, Figure 9.3 is similar to that of Figure 9.2.
In contrast, Figure 9.4 shows evidence of mutual impacts between the two mar-
kets. Third, the maximized log likelihood function for model (9.20) is −535.13 for
t = 8, . . . , 469, whereas that of model (9.21) is −540.32; see the log probabil-
ity density function in Eq. (9.6). Therefore, model (9.20) is preferred if one uses
the likelihood principal. Finally, because practical implications of the two bivariate
volatility models differ dramatically, further investigation is needed to separate them.
Such an investigation may use a longer sample period or include more variables (e.g.,
using some U.S. market returns).

Example 9.2. As a second illustration, consider the monthly log returns, in
percentages, of IBM stock and the S&P 500 index from January 1926 to December
1999 used in Chapter 8. Let r1t and r2t be the monthly log returns for IBM stock
and the S&P 500 index, respectively. If a constant-correlation GARCH(1, 1) model
is entertained, we obtain the mean equations

r1t = 1.351 + 0.072r1,t−1 + 0.055r1,t−2 − 0.119r2,t−2 + a1t

r2t = 0.703 + a2t ,

where standard errors of the parameters in the first equation are 0.225, 0.029, 0.034,
and 0.044, respectively, and that of the parameter in the second equation is 0.155.
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Figure 9.3. Estimated volatilities for daily log returns in percentages of stock market indexes
for Hong Kong and Japan from January 1, 1996 to October 16, 1997: (a) the Hong Kong
market, and (b) the Japanese market. The model used is in Eq. (9.20).

The volatility equations are

[
σ11,t
σ22,t

]
=


2.98
(0.59)
2.09
(0.47)

+


0.079 ·
(0.013)
0.042 0.045
(0.009) (0.010)

[a2
1,t−1

a2
2,t−1

]

+


0.873 −0.031
(0.020) (0.009)
−0.066 0.913
(0.015) (0.014)

[σ11,t−1
σ22,t−1

]
, (9.22)

where the numbers in parentheses are standard errors. The constant correlation coef-
ficient is 0.614 with standard error 0.020. Using the standardized residuals, we obtain
the Ljung–Box statistics Q(4) = 16.77(0.21) and Q(8) = 32.40(0.30), where the p
values shown in parentheses are obtained from chi-squared distributions with 13 and
29 degrees of freedom, respectively. Here the degrees of freedom have been adjusted
because the mean equations contain three lagged predictors. For the squared stan-
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Figure 9.4. Estimated volatilities for daily log returns in percentages of stock market indexes
for Hong Kong and Japan from January 1, 1996 to October 16, 1997: (a) the Hong Kong
market, and (b) the Japanese market. The model used is in Eq. (9.21).

dardized residuals, we have Q(4) = 18.00(0.16) and Q(8) = 39.09(0.10). There-
fore, at the 5% significance level, the standardized residuals ãt have no serial correla-
tions or conditional heteroscedasticities. This bivariate GARCH(1, 1) model shows
a feedback relationship between the volatilities of the two monthly log returns.

9.2.2 Time-Varying Correlation Models

A major drawback of the constant-correlation volatility models is that the correlation
coefficient tends to change over time in a real application. Consider the monthly log
returns of IBM stock and the S&P 500 index used in Example 9.2. It is hard to justify
that the S&P 500 index return, which is a weighted average, can maintain a constant
correlation coefficient with IBM return over the past 70 years. Figure 9.5 shows
the sample correlation coefficient between the two monthly log return series using
a moving window of 120 observations (i.e., 10 years). The correlation changes over
time and appears to be decreasing in recent years. The decreasing trend in correlation
is not surprising because the ranking of IBM market capitalization among large U.S.
industrial companies has changed in recent years. A Lagrange multiplier statistic
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Figure 9.5. The sample correlation coefficient between monthly log returns of IBM stock and
the S&P 500 index. The correlation is computed by a moving window of 120 observations.
The sample period is from January 1926 to December 1999.

was proposed recently by Tse (2000) to test constant correlation coefficients in a
multivariate GARCH model.

A simple way to relax the constant-correlation constraint within the GARCH
framework is to specify an exact equation for the conditional correlation coefficient.
This can be done by two methods using the two reparameterizations of Σt discussed
in Section 9.1. First, we use the correlation coefficient directly. Because the correla-
tion coefficient between the returns of IBM stock and S&P 500 index is positive and
must be in the interval [0, 1], we employ the equation

ρ21,t = exp(qt )

1 + exp(qt )
, (9.23)

where

qt = �0 +�1ρ21,t−1 +�2
a1,t−1a2,t−1√
σ11,t−1σ22,t−1

,

where σi i,t−1 is the conditional variance of the shock ai,t−1. We refer to this equation
as a GARCH(1, 1) model for the correlation coefficient because it uses the lag-1
cross-correlation and the lag-1 cross-product of the two shocks. If �1 = �2 = 0,
then model (9.23) reduces to the case of constant correlation.
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In summary, a time-varying correlation bivariate GARCH(1, 1)model consists of
two sets of equations. The first set of equations consists of a bivariate GARCH(1, 1)
model for the conditional variances and the second set of equation is a GARCH(1, 1)
model for the correlation in Eq. (9.23). In practice, a negative sign can be added
to Eq. (9.23) if the correlation coefficient is negative. In general, when the sign of
correlation is unknown, we can use the Fisher transformation for correlation

qt = ln

(
1 + ρ21,t

1 − ρ21,t

)
or ρ21,t = exp(qt )− 1

exp(qt )+ 1

and employ a GARCH model for qt to model the time-varying correlation between
two returns.

Example 9.2. (continued). Augmenting Eq. (9.23) to the GARCH(1, 1)model
in Eq. (9.22) for the monthly log returns of IBM stock and the S&P 500 index and
performing a joint estimation, we obtain the following model for the two series:

r1t = 1.318 + 0.076r1,t−1 − 0.068r2,t−2 + a1t

r2t = 0.673 + a2t ,

where standard errors of the three parameters in the first equation are 0.215, 0.026,
and 0.034, respectively, and that of the parameter in the second equation is 0.151.
The volatility equations are

[
σ11,t
σ22,t

]
=


2.80
(0.58)
1.71
(0.40)

+


0.084 ·
(0.013)
0.037 0.054
(0.009) (0.010)

[a2
1,t−1

a2
2,t−1

]

+


0.864 −0.020
(0.021) (0.009)
−0.058 0.914
(0.014) (0.013)

[σ11,t−1
σ22,t−1

]
, (9.24)

where, as before, standard errors are in parentheses. The conditional correlation
equation is

ρt = exp(qt )

1 + exp(qt )
, qt = −2.024 + 3.983ρt−1 + 0.088

a1,t−1a2,t−1√
σ11,t−1σ22,t−1

, (9.25)

where standard errors of the estimates are 0.050, 0.090, and 0.019, respectively.
The parameters of the prior correlation equation are highly significant. Applying the
Ljung–Box statistics to the standardized residuals ãt , we have Q(4) = 20.57(0.11)
and Q(8) = 36.08(0.21). For the squared standardized residuals, we have Q(4) =
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Figure 9.6. The fitted conditional correlation coefficient between monthly log returns of IBM
stock and the S&P 500 index using the time-varying correlation GARCH(1, 1) model of
Example 9.2. The horizontal line denotes the average 0.612 of the correlation coefficients.

16.69(0.27) and Q(8) = 36.71(0.19). Therefore, the standardized residuals of the
model have no significant serial correlations or conditional heteroscedasticities.

It is interesting to compare this time-varying correlation GARCH(1, 1) model
with the constant-correlation GARCH(1, 1) model in Eq. (9.22). First, the mean
and volatility equations of the two models are close. Second, Figure 9.6 shows the
fitted conditional-correlation coefficient between the monthly log returns of IBM
stock and the S&P 500 index based on model (9.25). The plot shows that the cor-
relation coefficient fluctuated over time and became smaller in recent years. This
latter characteristic is in agreement with that of Figure 9.5. Third, the average of
the fitted correlation coefficients is 0.612, which is essentially the estimate 0.614 of
the constant-correlation model in Eq. (9.22). Fourth, using the sample variances of
rit as the starting values for the conditional variances and the observations from
t = 4 to t = 888, the maximized log likelihood function is −3691.21 for the
constant-correlation GARCH(1, 1) model and −3679.64 for the time-varying cor-
relation GARCH(1, 1)model. Thus, the time-varying correlation model shows some
significant improvement over the constant-correlation model. Finally, consider the
1-step ahead volatility forecasts of the two models at the forecast origin h = 888.
For the constant-correlation model in Eq. (9.22), we have a1,888 = 3.075, a2,888 =
4.931, σ11,888 = 77.91, and σ22,888 = 21.19. Therefore, the 1-step ahead forecast
for the conditional covariance matrix is
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Σ̂888(1) =
[

71.09 21.83
21.83 17.79

]
,

where the covariance is obtained by using the constant correlation coefficient 0.614.
For the time-varying correlation model in Eqs. (9.24) and (9.25), we have a1,888 =
3.287, a2,888 = 4.950, σ11,888 = 83.35, σ22,888 = 28.56, and ρ888 = 0.546. The
1-step ahead forecast for the covariance matrix is

Σ̂888(1) =
[

75.15 23.48
23.48 24.70

]
,

where the forecast of the correlation coefficient is 0.545.

In the second method, we use the Cholesky decomposition of Σt to model
time-varying correlations. For the bivariate case, the parameter vector is Ξt =
(g11,t , g22,t , q21,t )

′; see Eq. (9.13). A simple GARCH(1, 1)-type model for at is

g11,t = α10 + α11b2
1,t−1 + β11g11,t−1

q21,t = γ0 + γ1q21,t−1 + γ2a2,t−1 (9.26)

g22,t = α20 + α21b2
1,t−1 + α22b2

2,t−1 + β21g11,t−1 + β22g22,t−1,

where b1t = a1t and b2t = a2t −q21,t a1t . Thus, b1t assumes a univariate GARCH(1,
1) model, b2t uses a bivariate GARCH(1, 1) model, and q21,t is auto-correlated and
uses a2,t−1 as an additional explanatory variable. The probability density function
relevant to maximum likelihood estimation is given in Eq. (9.15) with k = 2.

Example 9.2. (continued). Again we use the monthly log returns of IBM
stock and the S&P 500 index to demonstrate the volatility model in Eq. (9.26).
Using the same specification as before, we obtain the fitted mean equations as

r1t = 1.364 + 0.075r1,t−1 − 0.058r2,t−2 + a1t

r2t = 0.643 + a2t ,

where standard errors of the parameters in the first equation are 0.219, 0.027, and
0.032, respectively, and that of the parameter in the second equation is 0.154. These
two mean equations are close to what we obtained before. The fitted volatility model
is

g11,t = 3.714 + 0.113b2
1,t−1 + 0.804g11,t−1

q21,t = 0.0029 + 0.9915q21,t−1 − 0.0041a2,t−1 (9.27)

g22,t = 1.023 + 0.021b2
1,t−1 + 0.052b2

2,t−1 − 0.040g11,t−1 + 0.937g22,t−1,
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where b1t = a1t , b2t = a2t − q21,t b1t . Standard errors of the parameters in the
equation of g11,t are 1.033, 0.022, and 0.037, respectively, those of the parameters
in the equation of q21,t are 0.001, 0.002, and 0.0004, respectively, and those of the
parameters in the equation of g22,t are 0.344, 0.007, 0.013, and 0.015, respectively.
All estimates are statistically significant at the 1% level.

The conditional covariance matrix Σt can be obtained from model (9.27) by using
the Cholesky decomposition in Eq. (9.7). For the bivariate case, the relationship is
specifically given in Eq. (9.8). Consequently, we obtain the time-varying correlation
coefficient as

ρt = σ21,t√
σ11,tσ22,t

= q21,t
√

g11,t√
g22,t + q2

21,t g11,t

. (9.28)

Using the fitted values of σ11,t and σ22,t , we can compute the standardized residuals
to perform model checking. The Ljung–Box statistics for the standardized residuals
of model (9.27) give Q(4) = 19.77(0.14) and Q(8) = 34.22(0.27). For the squared
standardized residuals, we have Q(4) = 15.34(0.36) and Q(8) = 31.87(0.37).
Thus, the fitted model is adequate in describing the conditional mean and volatility.
The model shows a strong dynamic dependence in the correlation; see the coefficient
0.9915 in Eq. (9.27).

Figure 9.7 shows the fitted time-varying correlation coefficient in Eq. (9.28).
It shows a smoother correlation pattern than that of Figure 9.6 and confirms the
decreasing trend of the correlation coefficient. In particular, the fitted correlation
coefficients in recent years are smaller than those of the other models. The two time-
varying correlation models for the monthly log returns of IBM stock and the S&P
500 index have comparable maximized likelihood functions of about −3672, indicat-
ing the fits are similar. However, the approach based on the Cholesky decomposition
may have some advantages. First, it does not require any parameter constraint in esti-
mation to ensure the positive definiteness of Σt . If one also uses log transformation
for gii,t , then no constraints are needed for the entire volatility model. Second, the
log likelihood function becomes simple under the transformation. Third, the time-
varying parameters qi j,t and gii,t have nice interpretations. However, the transforma-
tion makes inference a bit more complicated because the fitted model may depend
on the ordering of elements in at ; recall that a1t is not transformed. In theory, the
ordering of elements in at should have no impact on volatility.

Finally, the 1-step ahead forecast of the conditional covariance matrix at the fore-
cast origin t = 888 for the new time-varying correlation model is

Σ̂888(1) =
[

73.45 7.34
7.34 17.87

]
.

The correlation coefficient of the prior forecast is 0.203, which is substantially
smaller than those of the previous two models. However, forecasts of the conditional
variances are similar as before.
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Figure 9.7. The fitted conditional correlation coefficient between monthly log returns of IBM
stock and the S&P 500 index using the time-varying correlation GARCH(1, 1) model of
Example 9.2 with Cholesky decomposition. The horizontal line denotes the average 0.612
of the estimated coefficients.

Remark: In a recent manuscript, Tse and Tsui (1998) consider a multivariate
GARCH model with time-varying correlations. For a k-dimensional returns, these
authors assume that the conditional correlation matrix ρt follows the model

ρt = (1 − θ1 − θ2)ρ+ θ1ρt−1 + θ2ψt−1,

where θ1 and θ2 are scalar parameters, ρ is a k × k positive definite matrix with unit
diagonal elements, and ψt−1 is the k × k sample correlation matrix using shocks
from t − m, . . . , t − 1 for a prespecified m. Estimation of the two scalar parameters
θ1 and θ2 requires special constraints to ensure positive definiteness of the corre-
lation matrix. This approach seems much more complicated than the two methods
considered in this chapter.

9.3 HIGHER DIMENSIONAL VOLATILITY MODELS

In this section, we make use of the sequential nature of Cholesky decomposition to
suggest a strategy for building a high-dimensional volatility model. Again, write the
vector return series as rt = µt + at . The mean equations for rt can be specified by
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using the methods of Chapter 8. A simple vector AR model is often sufficient. Here
we focus on building a volatility model using the shock process at .

Based on the discussion of Cholesky decomposition in Section 9.1, the orthogonal
transformation from ait to bit only involves b jt for j < i . In addition, the time-
varying volatility models built in Section 9.2 appear to be nested in the sense that the
model for gii,t only depends on quantities related to b jt for j < i . Consequently, we
consider the following sequential procedure to build a multivariate volatility model:

1. Select a market index or a stock return that is of major interest. Build a uni-
variate volatility model for the selected return series.

2. Augment a second return series to the system, perform the orthogonal trans-
formation on the shock process of this new return series, and build a bivari-
ate volatility model for the system. The parameter estimates of the univariate
model in Step 1 can be used as the starting values in bivariate estimation.

3. Augment a third return series to the system, perform the orthogonal trans-
formation on this newly added shock process, and build a three-dimensional
volatility model. Again parameter estimates of the bivariate model can be used
as the starting values in the three-dimensional estimation.

4. Continue the augmentation until a joint volatility model is built for all the
return series of interest.

Finally, model checking should be performed in each step to ensure the adequacy of
the fitted model. Experience shows that this sequential procedure can simplify sub-
stantially the complexity involved in building a high-dimensional volatility model.
In particular, it can markedly reduce the computing time in estimation.

Example 9.3. We demonstrate the proposed sequential procedure by build-
ing a volatility model for the daily log returns of S&P 500 index and the stocks
of Cisco Systems and Intel Corporation. The data span is from January 2, 1991
to December 31, 1999 with 2275 observations. The log returns are in percentages
and shown in Figure 9.8. Components of the return series are ordered as rt =
(SP5t ,CSCOt , INTCt )

′. The sample means, standard errors, and correlation matrix
of the data are

µ̂ =
0.066

0.257
0.156

 ,
σ̂1
σ̂2
σ̂3

 =
0.875

2.853
2.464

 , ρ̂ =
1.00 0.52 0.50

0.52 1.00 0.47
0.50 0.47 1.00

 .
Using the Ljung–Box statistics to detect any serial dependence in the return series,

we obtain Q(1) = 26.20, Q(4) = 79.73, and Q(8) = 123.68. These test statistics
are highly significant with p values close to zero as compared with chi-squared dis-
tributions with degrees of freedom 9, 36, and 72, respectively. There is indeed some
serial dependence in the data. Table 9.1 gives the first five lags of sample cross-
correlation matrixes shown in the simplified notation of Chapter 8. An examination
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Figure 9.8. Time plots of daily log returns in percentages of the S&P 500 index and stocks of
Cisco Systems and Intel Corporation from January 2, 1991 to December 31, 1999.

of the table shows that (a) the daily log return of S&P 500 index does not depend on
the past returns of Cisco or Intel, (b) the log return of Cisco stock has some serial
correlations and depends on the past return of S&P 500 index (see lags 2 and 5), and
(c) the log return of Intel stock depends on the past returns of S&P 500 index (see
lags 1 and 5). These observations are similar to that between the returns of IBM stock
and S&P 500 index analyzed in Chapter 8. They suggest that returns of individual

Table 9.1. Sample Cross-Correlation Matrixes of Daily Log Returns of
the S&P 500 Index and the Stocks of Cisco Systems and Intel Corpora-
tion from January 2, 1991 to December 31, 1999.

Lag

1 2 3 4 5 6

. . .

. . .

− . .

. . .

. − .

. . .

− . .

. . .

. . .

. . .

. . .

. . .

− . .

− . .

− . .

. . .

. − .

. . .
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large-cap companies tend to be affected by the past behavior of the market. How-
ever, the market return is not significantly affected by the past returns of individual
companies.

Turning to volatility modeling and following the suggested procedure, we start
with the log return of S&P 500 index and obtain the model

r1t = 0.078 + 0.042r1,t−1 − 0.062r1,t−3 − 0.048r1,t−4 − 0.052r1,t−5 + a1t

σ11,t = 0.013 + 0.092a2
1,t−1 + 0.894σ11,t−1, (9.29)

where standard errors of the parameters in the mean equation are 0.016, 0.023,
0.020, 0.022, and 0.020, respectively, and those of the parameters in the volatil-
ity equation are 0.002, 0.006, and 0.007, respectively. Univariate Ljung–Box statis-
tics of the standardized residuals and their squared series fail to detect any remain-
ing serial correlation or conditional heteroscedasticity in the data. Indeed, we have
Q(10) = 7.38(0.69) for the standardized residuals and Q(10) = 3.14(0.98) for the
squared series.

Augmenting the daily log returns of Cisco stock to the system, we build a bivariate
model with mean equations given by

r1t = 0.065 − 0.046r1,t−3 + a1t

r2t = 0.325 + 0.195r1,t−2 − 0.091r2,t−2 + a2t , (9.30)

where all of the estimates are statistically significant at the 1% level. Using the nota-
tion of Cholesky decomposition, we obtain the volatility equations as

g11,t = 0.006 + 0.051b2
1,t−1 + 0.943g11,t−1

q21,t = 0.331 + 0.790q21,t−1 − 0.041a2,t−1 (9.31)

g22,t = 0.177 + 0.082b2
2,t−1 + 0.890g22,t−1,

where b1t = a1t , b2t = a2t − q21,t b1t , standard errors of the parameters in the equa-
tion of g11,t are 0.001, 0.005, and 0.006, those of the parameters in the equation of
q21,t are 0.156, 0.099, and 0.011, and those of the parameters in the equation of g22,t
are 0.029, 0.008, and 0.011, respectively. The bivariate Ljung–Box statistics of the
standardized residuals fail to detect any remaining serial dependence or conditional
heteroscedasticity. The bivariate model is adequate. Comparing with Eq. (9.29), we
see that the difference between the marginal and univariate models of r1t is small.

The next and final step is to augment the daily log returns of Intel stock to the
system. The mean equations become

r1t = 0.065 − 0.043r1,t−3 + a1t

r2t = 0.326 + 0.201r1,t−2 − 0.089r2,t−2 + a2t (9.32)

r3t = 0.192 − 0.264r1,t−1 + 0.059r3,t−1 + a3t ,
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where standard errors of the parameters in the first equation are 0.016 and 0.017,
those of the parameters in the second equation are 0.052, 0.059, and 0.021, and those
of the parameters in the third equation are 0.050, 0.057, and 0.022, respectively. All
estimates are statistically significant at about the 1% level. As expected, the mean
equations for r1t and r2t are essentially the same as those in the bivariate case.

The three-dimensional time-varying volatility model becomes a bit more compli-
cated, but it remains manageable as

g11,t = 0.006 + 0.050b2
1,t−1 + 0.943g11,t−1

q21,t = 0.277 + 0.824q21,t−1 − 0.035a2,t−1 (9.33)

g22,t = 0.178 + 0.082b2
2,t−1 + 0.889g22,t−1

q31,t = 0.039 + 0.973q31,t−1 + 0.010a3,t−1

q32,t = 0.006 + 0.981q32,t−1 + 0.004a2,t−1

g33,t = 1.188 + 0.053b2
3,t−1 + 0.687g33,t−1 − 0.019g22,t−1,

where b1t = a1t , b2t = a2t − q21,t b1t , b3t = a3t − q31,t b1t − q32,t b2t , and
standard errors of the parameters are given in Table 9.2. Except for the con-
stant term of the q32,t equation, all estimates are significant at the 5% level.
Let ãt = (a1t/σ̂1t , a2t/σ̂2t , a3t/σ̂3t )

′ be the standardized residual series, where
σ̂i t = √

σ̂i i,t is the fitted conditional standard error of the i th return. The Ljung–Box
statistics of ãt give Q(4) = 34.48(0.31) and Q(8) = 60.42(0.70), where the degrees
of freedom of the chi-squared distributions are 31 and 67, respectively, after adjusting
for the number of parameters used in the mean equations. For the squared standard-
ized residual series ã2

t , we have Q(4) = 28.71(0.58) and Q(8) = 52.00(0.91).
Therefore, the fitted model appears to be adequate in modeling the conditional
means and volatilities.

The three-dimensional volatility model in Eq. (9.33) shows some interesting fea-
tures. First, it is essentially a time-varying correlation GARCH(1, 1) model because
only lag-1 variables are used in the equations. Second, the volatility of the daily log
return of S&P 500 index does not depend on the past volatilities of Cisco or Intel
stock return. Third, by taking the inverse transformation of the Cholesky decomposi-
tion, the volatilities of daily log returns of Cisco and Intel stocks depend on the past

Table 9.2. Standard Errors of Parameter Estimates of a Three-Dimensional Volatility
Model for the Daily Log Returns in Percentages of S&P 500 Index and Stocks of Cisco
Systems and Intel Corporation from January 2, 1991 to December 31, 1999. The Order-
ing of the Parameter Is the Same As That Appears in Eq. (9.33).

Equation Standard error Equation Standard error

g11,t 0.001 0.005 0.006 q21,t 0.135 0.086 0.010
g22,t 0.029 0.009 0.011 q31,t 0.017 0.012 0.004
g33,t 0.407 0.015 0.100 0.008 q32,t 0.004 0.013 0.001
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Figure 9.9. Time plots of fitted volatilities for daily log returns, in percentages, of the S&P
500 index and stocks of Cisco Systems and Intel Corporation from January 2, 1991 to Decem-
ber 31, 1999.

volatility of the market return; see the relationships between elements of Σt , Lt , and
Gt given in Section 9.1. Fourth, the correlation quantities qi j,t have high persistence
with large AR(1) coefficients.

Figure 9.9 shows the fitted volatility processes of the model (i.e., σ̂i i,t ) for the
data. The volatility of the index return is much smaller than those of the two indi-
vidual stock returns. The plots also show that the volatility of the index return has
increased in recent years, but this is not the case for the return of Cisco Systems.
Figure 9.10 shows the time-varying correlation coefficients between the three return
series. Of particular interest is to compare Figures 9.9 and 9.10. They show that
the correlation coefficient between two return series increases when the returns are
volatile. This is in agreement with empirical study of relationships between interna-
tional stock market indexes for which the correlation between two markets tends to
increase during a financial crisis.

The volatility model in Eq. (9.33) consists of two sets of equations. The first
set of equations describes the time evolution of conditional variances (i.e. gii,t ),
and the second set of equations deals with correlation coefficients (i.e. qi j,t with
i > j). For this particular data set, an AR(1) model might be sufficient for the cor-
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Figure 9.10. Time plots of fitted time-varying correlation coefficients between daily log
returns of S&P 500 index and stocks of Cisco Systems and Intel Corporation from January 2,
1991 to December 31, 1999.

relation equations. Similarly, a simple AR model might also be sufficient for the
conditional variances. Define vt = (v11,t , v22,t , v33,t )

′, where vi i,t = ln(gii,t ), and
qt = (q21,t , q31,t , q32,t )

′. The previous discussion suggests that we can use the sim-
ple lag-1 models

vt = c1 + β1vt−1, qt = c2 + β2qt−1

as exact functions to model the volatility of asset returns, where ci are constant vec-
tors and βi are 3×3 real-valued matrixes. If a noise term is also included in the prior
equations, then the models become

vt = c1 + β1vt−1 + e1t , qt = c2 + β2qt−1 + e2t ,

where ei t are random shocks with mean zero and a positive definite covariance
matrix, and we have a simple multivariate stochastic volatility model. In a recent
manuscript, Chib, Nardari, and Shephard (1999) use Markov Chain Monte Carlo
(MCMC) methods to study high-dimensional stochastic volatility models. The model
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considered there allows for time-varying correlations, but in a relatively restrictive
manner. Additional references of multivariate volatility model include Harvey, Ruiz,
and Shephard (1995). We discuss MCMC methods to volatility modeling in Chap-
ter 10.

9.4 FACTOR-VOLATILITY MODELS

Another approach to simplifying the dynamic structure of a multivariate volatility
process is to use factor models. In practice, the “common factors” can be determined
a priori by substantive matter or empirical methods. As an illustration, we use the
factor analysis of Chapter 8 to discuss factor-volatility models. Because volatility
models are concerned with the evolution over time of the conditional covariance
matrix of at , where at = rt − µt , a simple way to identify the “common factors” in
volatility is to perform a principal component analysis (PCA) on at ; see the PCA of
Chapter 8. Building a factor volatility model thus involves a three-step procedure:

• select the first few principal components that explain a high percentage of vari-
ability in at ,

• build a volatility model for the selected principal components, and

• relate the volatility of each ait series to the volatilities of the selected principal
components.

The objective of such a procedure is to reduce the dimension, but maintain an accu-
rate approximation of the multivariate volatility.

Example 9.4. Consider again the monthly log returns, in percentages, of
IBM stock and the S&P 500 index of Example 9.2. Using the bivariate AR(3) model
of Example 8.4, we obtain an innovational series at . Performing a PCA on at based
on its covariance matrix, we obtained eigenvalues 63.373 and 13.489. The first eigen-
value explains 82.2% of the generalized variance of at . Therefore, we may choose
the first principal component xt = 0.797a1t + 0.604a2t as the common factor. Alter-
natively, as shown by the model in Example 8.4, the serial dependence in rt is weak
and hence, one can perform the PCA on rt directly. For this particular instance, the
two eigenvalues of the sample covariance matrix of rt are 63.625 and 13.513, which
are essentially the same as those based on at . The first principal component explains
approximately 82.5% of the generalized variance of rt , and the corresponding com-
mon factor is xt = 0.796r1t + 0.605r2t . Consequently, for the two monthly log
return series considered, the effect of the conditional mean equations on PCA is neg-
ligible.

Based on the prior discussion and for simplicity, we use xt = 0.796r1t + 0.605r2t

as a common factor for the two monthly return series. Figure 9.11(a) shows the time
plot of this common factor. If univariate Gaussian GARCH models are entertained,
we obtain the following model for xt :
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Figure 9.11. (a) Time plot of the first principal component of the monthly log returns of IBM
stock and the S&P 500 index. (b) The fitted volatility process based on a GARCH(1, 1)model.

xt = 1.317 + 0.096xt−1 + at , at = σtεt

σ 2
t = 3.834 + 0.110a2

t−1 + 0.825σ 2
t−1. (9.34)

All parameter estimates of the previous model are highly significant at the 1% level,
and the Ljung–Box statistics of the standardized residuals and their squared series
fail to detect any model inadequacy. Figure 9.11(b) shows the fitted volatility of xt

[i.e., the sample σ 2
t series in Eq. (9.34)].

Using σ 2
t of model (9.34) as a common volatility factor, we obtain the following

model for the original monthly log returns. The mean equations are

r1t = 1.140 + 0.079r1,t−1 + 0.067r1,t−2 − 0.122r2,t−2 + a1t

r2t = 0.537 + a2t ,

where standard errors of the parameters in the first equation are 0.211, 0.030, 0.031,
and 0.043, respectively, and that of the parameter in the second equation is 0.165.
The conditional variance equation is
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[
σ11,t
σ22,t

]
=


19.08
(3.70)
−5.62
(2.36)

+


0.098 ·
(0.044)

· ·

[a2
1,t−1

a2
2,t−1

]
+


0.333
(0.076)
0.596
(0.050)

 σ 2
t , (9.35)

where, as before, standard errors are in parentheses, and σ 2
t is obtained from model

(9.34). The conditional correlation equation is

ρt = exp(qt )

1 + exp(qt )
, qt = −2.098 + 4.120ρt−1 + 0.078

a1,t−1a2,t−1√
σ11,t−1σ22,t−1

, (9.36)

where standard errors of the three parameters are 0.025, 0.038, and 0.015, respec-
tively. Defining the standardized residuals as before, we obtain Q(4) = 15.37(0.29)
and Q(8) = 34.24(0.23), where the number in parentheses denotes p value.
Therefore, the standardized residuals have no serial correlations. Yet we have
Q(4) = 20.25(0.09) and Q(8) = 61.95(0.0004) for the squared standardized
residuals. The volatility model in Eq. (9.35) does not adequately handle the condi-
tional heteroscedasticity of the data especially at higher lags. This is not surprising
as the single common factor only explains about 82.5% of the generalized variance
of the data.

Comparing the factor model in Eqs. (9.35) and (9.36) with the time-varying cor-
relation model in Eqs. (9.24) and (9.25), we see that (a) the correlation equations of
the two models are essential the same, (b) as expected the factor model uses fewer
parameters in the volatility equation, and (c) the common-factor model provides a
reasonable approximation to the volatility process of the data.

Remark: In Example 9.4, we used a two-step estimation procedure. In the first
step, a volatility model is built for the common factor. The estimated volatility is
treated as given in the second step to estimate the multivariate volatility model. Such
an estimation procedure is simple, but may not be efficient. A more efficient esti-
mation procedure is to perform a joint estimation. This can be done relatively eas-
ily provided that the common factors are known. For example, for the monthly log
returns of Example 9.4, a joint estimation of Eqs. (9.34)–(9.36) can be performed if
the common factor xt = 0.769r1t + 0.605r2t is treated as given.

9.5 APPLICATION

We illustrate the application of multivariate volatility models by considering the
Value at Risk (VaR) of a financial position with multiple assets. Suppose that an
investor holds a long position in the stocks of Cisco Systems and Intel Corporation
each worth $1 million. We use the daily log returns for the two stocks from January 2,
1991 to December 31, 1999 to build volatility models. The VaR is computed using
the 1-step ahead forecasts at the end of data span and 5% critical values.
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Let VaR1 be the value at risk for holding the position on Cisco Systems stock and
VaR2 for holding Intel stock. Results of Chapter 7 show that the overall daily VaR
for the investor is

VaR =
√

VaR2
1 + VaR2

2 + 2ρVaR1VaR2.

In this illustration, we consider three approaches to volatility modeling for calculat-
ing VaR. For simplicity, we do not report standard errors for the parameters involved
or model checking statistics. Yet all of the estimates are statistically significant at the
5% level and the models are adequate based on the Ljung–Box statistics of the stan-
dardized residual series and their squared series. The log returns are in percentages
so that the quantiles are divided by 100 in VaR calculation. Let r1t be the return of
Cisco stock and r2t the return of Intel stock.

(A) Univariate Models
This approach uses a univariate volatility model for each stock return and uses the
sample correlation coefficient of the stock returns to estimate ρ. The univariate
volatility models for the two stock returns are

r1t = 0.380 + 0.034r1,t−1 − 0.061r1,t−2 − 0.055r1,t−3 + a1t

σ 2
1t = 0.599 + 0.117a2

1,t−1 + 0.814σ 2
1,t−1

r2t = 0.187 + a2t

σ 2
2t = 0.310 + 0.032a2

2,t−1 + 0.918σ 2
2,t−1.

The sample correlation coefficient is 0.473. The 1-step ahead forecasts needed in
VaR calculation at the forecast origin t = 2275 are

r̂1 = 0.626, σ̂ 2
1 = 4.152, r̂2 = 0.187, σ̂ 2

2 = 6.087, ρ̂ = 0.473.

The 5% quantiles for both daily returns are

q1 = 0.626 − 1.65
√

4.152 = −2.736, q2 = 0.187 − 1.65
√

6.087 = −3.884,

where the negative sign denotes loss. The VaR for the individual stocks are VaR1 =
$1000000q1/100 = $27360 and VaR2 = $1000000q2/100 = $38840. Conse-
quently, the overall VaR for the investor is VaR = $57117.

(B) Constant Correlation Bivariate Model
This approach employs a bivariate GARCH(1, 1) model for the stock returns. The
correlation coefficient is assumed to be constant over time, but it is estimated jointly
with other parameters. The model is

r1t = 0.385 + 0.038r1,t−1 − 0.060r1,t−2 − 0.047r1,t−3 + a1t

r2t = 0.222 + a2t
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σ11,t = 0.624 + 0.110a2
1,t−1 + 0.816σ11,t−1

σ22,t = 0.664 + 0.038a2
2,t−1 + 0.853σ22,t−1

and ρ̂ = 0.475. This is a diagonal bivariate GARCH(1, 1) model. The 1-step ahead
forecasts for VaR calculation at the forecast origin t = 2275 are

r̂1 = 0.373, σ̂ 2
1 = 4.287, r̂2 = 0.222, σ̂ 2

2 = 5.706, ρ̂ = 0.475.

Consequently, we have VaR1 = $30432 and VaR2 = $37195. The overall 5% VaR
for the investor is VaR = $58180.

(C) Time-Varying Correlation Model
Finally, we allow the correlation coefficient to evolve over time by using the
Cholesky decomposition. The fitted model is

r1t = 0.355 + 0.039r1,t−1 − 0.057r1,t−2 − 0.038r1,t−3 + a1t

r2t = 0.206 + a2t

g11,t = 0.420 + 0.091b2
1,t−1 + 0.858g11,t−1

q21,t = 0.123 + 0.689q21,t−1 − 0.014a2,t−1

g22,t = 0.080 + 0.013b2
2,t−1 + 0.971g22,t−1,

where b1t = a1t and b2t = a2t − q21,t a1t . The 1-step ahead forecasts for VaR
calculation at the forecast origin t = 2275 are

r̂1 = 0.352, r̂2 = 0.206, ĝ11 = 4.252, q̂21 = 0.421, ĝ22 = 5.594.

Therefore, we have σ̂ 2
1 = 4.252, σ̂21 = 1.791 and σ̂ 2

2 = 6.348. The correlation
coefficient is ρ̂ = 0.345. Using these forecasts, we have VaR1 = $30504, VaR2 =
$39512, and the overall value at risk VaR = $57648.

The estimated VaR of the three approaches are similar. The univariate models give
the lowest VaR, whereas the constant-correlation model produces the highest VaR.
The range of the difference is about $1100. The time-varying volatility model seems
to produce a compromise between the two extreme models.

9.6 MULTIVARIATE t DISTRIBUTION

Empirical analysis indicates that the multivariate Gaussian innovations used in the
previous sections may fail to capture the kurtosis of asset returns. In this situation,
multivariate Student-t distribution might be useful. There are many versions of mul-
tivariate Student-t distribution. We give a simple version here for volatility modeling.

A k-dimensional random vector x = (x1, . . . , xk)
′ has a multivariate Student-

t distribution with v degrees of freedom and parameters µ = 0 and Σ = I (the
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indentify matrix) if its probability density function (pdf) is

f (x | v) = �((v + k)/2)

(πv)k/2�(v/2)
(1 + v−1x′x)−(v+k)/2, (9.37)

where �(y) is the Gamma function; see Mardia, Kent, and Bibby (1979, p. 57).
The variance of each component xi in Eq. (9.37) is v/(v − 2) and hence we define
εt = √

(v − 2)/v x as the standardized multivariate Student-t distribution with v
degrees of freedom. By transformation, the pdf of εt is

f (εt | v) = �((v + k)/2)

[π(v − 2)]k/2�(v/2)
[1 + (v − 2)−1ε′tεt ]−(v+k)/2. (9.38)

For volatility modeling, we write at = Σ1/2
t εt and assume that εt follows the multi-

variate Student-t distribution in Eq. (9.38). By transformation, the pdf of at is

f (at | v,Σt ) = �((v + k)/2)

[π(v − 2)]k/2�(v/2)|Σt |1/2 [1 + (v − 2)−1a′
tΣ

−1
t at ]−(v+k)/2.

Furthermore, if we use the Cholesky decomposition of Σt , then the pdf of the trans-
formed shock bt becomes

f (bt | v,Lt ,Gt )

= �((v + k)/2)

[π(v − 2)]k/2�(v/2)
∏k

j=1 g1/2
j j,t

[
1 + (v − 2)−1

k∑
j=1

b2
j t

g j j,t

]−(v+k)/2

,

where at = Lt bt and g j j,t is the conditional variance of b jt . Because this pdf does
not involve any matrix inversion, the conditional likelihood function of the data is
easy to evaluate.

APPENDIX A. SOME REMARKS ON ESTIMATION

The estimation of multivariate ARMA models in this chapter is done by using the
time series program SCA of Scientific Computing Associates. The estimation of mul-
tivariate volatility models is done by using the Regression Analysis for Time Series
(RATS) program. Below are some runstreams for estimating multivariate volatility
models using the RATS program. A line starting with “*” means “comment” only.

(A): Estimation of the diagonal constant-correlation AR(2)-GARCH(1, 1) model
for Example 9.2. The program includes some Ljung–Box statistics for each com-
ponent and some fitted values for the last few observations. The data file is
“m-ibmspln.dat,” which has two columns, and there are 888 observations.
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all 0 888:1
open data m-ibmspln.dat
data(org=obs) / r1 r2
set h1 = 0.0
set h2 = 0.0
nonlin a0 a1 b1 a00 a11 b11 rho c1 c2 p1
frml a1t = r1(t)-c1-p1*r2(t-1)
frml a2t = r2(t)-c2
frml gvar1 = a0+a1*a1t(t-1)**2+b1*h1(t-1)
frml gvar2 = a00+a11*a2t(t-1)**2+b11*h2(t-1)
frml gdet = -0.5*(log(h1(t)=gvar1(t))+log(h2(t)=gvar2(t)) $
+log(1.0-rho**2))
frml gln = gdet(t)-0.5/(1.0-rho**2)*((a1t(t)**2/h1(t)) $
+(a2t(t)**2/h2(t))-2*rho*a1t(t)*a2t(t)/sqrt(h1(t)*h2(t)))
smpl 3 888
compute c1 = 1.22, c2 = 0.57, p1 = 0.1, rho = 0.1
compute a0 = 3.27, a1 = 0.1, b1 = 0.6
compute a00 = 1.17, a11 = 0.13, b11 = 0.8
maximize(method=bhhh,recursive,iterations=150) gln
set fv1 = gvar1(t)
set resi1 = a1t(t)/sqrt(fv1(t))
set residsq = resi1(t)*resi1(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi1
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
set fv2 = gvar2(t)
set resi2 = a2t(t)/sqrt(fv2(t))
set residsq = resi2(t)*resi2(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi2
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
* Last few observations needed for computing forecasts *
set shock1 = a1t(t)
set shock2 = a2t(t)
print 885 888 shock1 shock2 fv1 fv2

(B): Estimation of the time-varying correlation model in Example 9.2.

all 0 888:1
open data m-ibmspln.dat
data(org=obs) / r1 r2
set h1 = 45.0
set h2 = 31.0
set rho = 0.8
nonlin a0 a1 b1 f1 a00 a11 b11 d11 f11 c1 c2 p1 p3 q0 q1 q2
frml a1t = r1(t)-c1-p1*r1(t-1)-p3*r2(t-2)
frml a2t = r2(t)-c2
frml gvar1 = a0+a1*a1t(t-1)**2+b1*h1(t-1)+f1*h2(t-1)
frml gvar2 = a00+a11*a2t(t-1)**2+b11*h2(t-1)+f11*h1(t-1) $
+d11*a1t(t-1)**2
frml rh1 = q0 + q1*rho(t-1) $
+ q2*a1t(t-1)*a2t(t-1)/sqrt(h1(t-1)*h2(t-1))
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frml rh = exp(rh1(t))/(1+exp(rh1(t)))
frml gdet = -0.5*(log(h1(t)=gvar1(t))+log(h2(t)=gvar2(t)) $
+log(1.0-(rho(t)=rh(t))**2))
frml gln = gdet(t)-0.5/(1.0-rho(t)**2)*((a1t(t)**2/h1(t)) $
+(a2t(t)**2/h2(t))-2*rho(t)*a1t(t)*a2t(t)/sqrt(h1(t)*h2(t)))
smpl 4 888
compute c1 = 1.4, c2 = 0.7, p1 = 0.1, p3 = -0.1
compute a0 = 2.95, a1 = 0.08, b1 = 0.87, f1 = -.03
compute a00 = 2.05, a11 = 0.05
compute b11 = 0.92, f11=-.06, d11=.04, q0 = -2.0
compute q1 = 3.0, q2 = 0.1
nlpar(criterion=value,cvcrit=0.00001)
maximize(method=bhhh,recursive,iterations=150) gln
set fv1 = gvar1(t)
set resi1 = a1t(t)/sqrt(fv1(t))
set residsq = resi1(t)*resi1(t)
* Checking standardized residuals *
cor(qstats,number=16,span=4) resi1
* Checking squared standardized residuals *
cor(qstats,number=16,span=4) residsq
set fv2 = gvar2(t)
set resi2 = a2t(t)/sqrt(fv2(t))
set residsq = resi2(t)*resi2(t)
* Checking standardized residuals *
cor(qstats,number=16,span=4) resi2
* Checking squared standardized residuals *
cor(qstats,number=16,span=4) residsq
* Last few observations needed for computing forecasts *
set rhohat = rho(t)
set shock1 = a1t(t)
set shock2 = a2t(t)
print 885 888 shock1 shock2 fv1 fv2 rhohat

(C): Estimation of the time-varying correlation model in Example 9.2 using
Cholesky decomposition.

all 0 888:1
open data m-ibmspln.dat
data(org=obs) / r1 r2
set h1 = 45.0
set h2 = 20.0
set q = 0.8
nonlin a0 a1 b1 a00 a11 b11 d11 f11 c1 c2 p1 p3 t0 t1 t2
frml a1t = r1(t)-c1-p1*r1(t-1)-p3*r2(t-2)
frml a2t = r2(t)-c2
frml v1 = a0+a1*a1t(t-1)**2+b1*h1(t-1)
frml qt = t0 + t1*q(t-1) + t2*a2t(t-1)
frml bt = a2t(t) - (q(t)=qt(t))*a1t(t)
frml v2 = a00+a11*bt(t-1)**2+b11*h2(t-1)+f11*h1(t-1) $
+d11*a1t(t-1)**2
frml gdet = -0.5*(log(h1(t) = v1(t))+ log(h2(t)=v2(t)))
frml garchln = gdet-0.5*(a1t(t)**2/h1(t)+bt(t)**2/h2(t))
smpl 5 888
compute c1 = 1.4, c2 = 0.7, p1 = 0.1, p3 = -0.1
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compute a0 = 1.0, a1 = 0.08, b1 = 0.87
compute a00 = 2.0, a11 = 0.05, b11 = 0.8
compute d11=.04, f11=-.06, t0 =0.2, t1 = 0.1, t2 = 0.1
nlpar(criterion=value,cvcrit=0.00001)
maximize(method=bhhh,recursive,iterations=150) garchln
set fv1 = v1(t)
set resi1 = a1t(t)/sqrt(fv1(t))
set residsq = resi1(t)*resi1(t)
* Checking standardized residuals *
cor(qstats,number=16,span=4) resi1
* Checking squared standardized residuals *
cor(qstats,number=16,span=4) residsq
set fv2 = v2(t)+qt(t)**2*v1(t)
set resi2 = a2t(t)/sqrt(fv2(t))
set residsq = resi2(t)*resi2(t)
* Checking standardized residuals *
cor(qstats,number=16,span=4) resi2
* Checking squared standardized residuals *
cor(qstats,number=16,span=4) residsq
* Last few observations needed for forecasts *
set rhohat = qt(t)*sqrt(v1(t)/fv2(t))
set shock1 = a1t(t)
set shock2 = a2t(t)
set g22 = v2(t)
set q21 = qt(t)
set b2t = bt(t)
print 885 888 shock1 shock2 fv1 fv2 rhohat g22 q21 b2t

(D): Estimation of the three-dimensional time-varying correlation volatility
model in Example 9.3 using Cholesky decomposition. Initial estimates are obtained
by a sequential modeling procedure.

all 0 2275:1
open data d-cscointc.dat
data(org=obs) / r1 r2 r3
set h1 = 1.0
set h2 = 4.0
set h3 = 3.0
set q21 = 0.8
set q31 = 0.3
set q32 = 0.3
nonlin c1 c2 c3 p3 p21 p22 p31 p33 a0 a1 a2 t0 t1 t2 b0 b1 $

b2 u0 u1 u2 w0 w1 w2 d0 d1 d2 d5
frml a1t = r1(t)-c1-p3*r1(t-3)
frml a2t = r2(t)-c2-p21*r1(t-2)-p22*r2(t-2)
frml a3t = r3(t)-c3-p31*r1(t-1)-p33*r3(t-1)
frml v1 = a0+a1*a1t(t-1)**2+a2*h1(t-1)
frml q1t = t0 + t1*q21(t-1) + t2*a2t(t-1)
frml bt = a2t(t) - (q21(t)=q1t(t))*a1t(t)
frml v2 = b0+b1*bt(t-1)**2+b2*h2(t-1)
frml q2t = u0 + u1*q31(t-1) + u2*a3t(t-1)
frml q3t = w0 + w1*q32(t-1) + w2*a2t(t-1)
frml b1t = a3t(t)-(q31(t)=q2t(t))*a1t(t)-(q32(t)=q3t(t))*bt(t)
frml v3 = d0+d1*b1t(t-1)**2+d2*h3(t-1)+d5*h2(t-1)
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frml gdet = -0.5*(log(h1(t) = v1(t))+ log(h2(t)=v2(t)) $
+log(h3(t)=v3(t)))

frml garchln = gdet-0.5*(a1t(t)**2/h1(t)+bt(t)**2/h2(t) $
+b1t(t)**2/h3(t))

smpl 8 2275
compute c1 = 0.07, c2 = 0.33, c3 = 0.19, p1 = 0.1, p3 = -0.04
compute p21 =0.2, p22 = -0.1, p31 = -0.26, p33 = 0.06
compute a0 = .01, a1 = 0.05, a2 = 0.94
compute t0 = 0.28, t1 =0.82, t2 = -0.035
compute b0 = .17, b1 = 0.08, b2 = 0.89
compute u0= 0.04, u1 = 0.97, u2 = 0.01
compute w0 =0.006, w1=0.98, w2=0.004
compute d0 =1.38, d1 = 0.06, d2 = 0.64, d5 = -0.027
nlpar(criterion=value,cvcrit=0.00001)
maximize(method=bhhh,recursive,iterations=250) garchln
set fv1 = v1(t)
set resi1 = a1t(t)/sqrt(fv1(t))
set residsq = resi1(t)*resi1(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi1
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
set fv2 = v2(t)+q1t(t)**2*v1(t)
set resi2 = a2t(t)/sqrt(fv2(t))
set residsq = resi2(t)*resi2(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi2
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
set fv3 = v3(t)+q2t(t)**2*v1(t)+q3t(t)**2*v2(t)
set resi3 = a3t(t)/sqrt(fv3(t))
set residsq = resi3(t)*resi3(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi3
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
* print standardized residuals and correlation-coefficients
set rho21 = q1t(t)*sqrt(v1(t)/fv2(t))
set rho31 = q2t(t)*sqrt(v1(t)/fv3(t))
set rho32 = (q2t(t)*q1t(t)*v1(t) $
+q3t(t)*v2(t))/sqrt(fv2(t)*fv3(t))
print 10 2275 resi1 resi2 resi3
print 10 2275 rho21 rho31 rho32
print 10 2275 fv1 fv2 fv3

EXERCISES

1. The file “m-spibmge.dat” contains the monthly log returns in percentages of S&P
500 index, IBM stock, and General Electric stock from January 1926 to December
1999. The returns include dividends.
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(a) Compute the sample mean, sample covariance matrix, and sample correlation
matrix of the three return series.

(b) Compute the lag-1 and lag-2 cross-correlation matrixes of the three series.
Draw inference concerning the linear relationships between the three series.
Is there any lead-lag relation?

(c) Use the multivariate Ljung–Box statistics to test the null hypothesis that H0 :
ρ1 = · · · = ρ4 = 0 at the 5% significance level. Draw your conclusion.

2. Focus on the monthly log returns in percentages of GE stock and the S&P 500
index. Build a constant correlation GARCH model for the bivariate series. Check
the adequacy of the fitted model, and obtain 1-step ahead forecast of the covari-
ance matrix at the forecast origin December 1999.

3. Focus on the monthly log returns in percentages of GE stock and the S&P 500
index. Build a time-varying correlation GARCH model for the bivariate series
using a logistic function for the correlation coefficient. Check the adequacy of
the fitted model, and obtain 1-step ahead forecast of the covariance matrix at the
forecast origin December 1999.

4. Focus on the monthly log returns in percentages of GE stock and the S&P 500
index. Build a time-varying correlation GARCH model for the bivariate series
using the Cholesky decomposition. Check the adequacy of the fitted model, and
obtain 1-step ahead forecast of the covariance matrix at the forecast origin Decem-
ber 1999. Compare the model with the other two models built in the previous
questions.

5. Consider the three-dimensional return series jointly. Build a multivariate time-
varying correlation volatility model for the data, using the Cholesky decomposi-
tion. Discuss the implications of the model and compute 1-step ahead volatility
forecast at the forecast origin t = 888.

6. An investor is interested in daily Value at Risk of his position on holding long
$0.5 million of Dell stock and $1 million of Cisco Systems stock. Use 5% critical
values and the daily log returns from January 2, 1990 to December 31, 1999 to
do the calculation. The data are in the file “d-dellcsco9099.dat.” Apply the three
approaches to volatility modeling in Section 9.5 and compare the results.
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C H A P T E R 10

Markov Chain Monte Carlo Methods
with Applications

Advances in computing facilities and computational methods have dramatically
increased our ability to solve complicated problems. The advances also extend the
applicability of many existing econometric and statistical methods. Examples of
such achievements in statistics include the Markov Chain Monte Carlo (MCMC)
method and data augmentation. These techniques enable us to make some statistical
inference that was not feasible just a few years ago. In this chapter, we introduce
the ideas of MCMC methods and data augmentation that are widely applicable in
finance. In particular, we discuss Bayesian inference via Gibbs sampling and demon-
strate various applications of MCMC methods. Rapid developments in the MCMC
methodology make it impossible to cover all the new methods available in the litera-
ture. Interested readers are referred to some recent books on Bayesian and empirical
Bayesian statistics (e.g., Carlin and Louis, 2000; Gelman, Carlin, Stern, and Rubin,
1995).

For applications, we focus on issues related to financial econometrics. The
demonstrations shown in this chapter only represent a small fraction of all pos-
sible applications of the techniques in finance. As a matter of fact, it is fair to say
that Bayesian inference and the MCMC methods discussed here are applicable to
most, if not all, of the studies in financial econometrics.

We begin the chapter by reviewing the concept of a Markov process. Consider a
stochastic process {Xt }, where each Xt assumes a value in the space Θ. The process
{Xt } is a Markov process if it has the property that, given the value of Xt , the values
of Xh , h > t , do not depend on the values Xs , s < t . In other words, {Xt } is a
Markov process if its conditional distribution function satisfies

P(Xh | Xs, s ≤ t) = P(Xh | Xt ), h > t.

If {Xt } is a discrete-time stochastic process, then the prior property becomes

P(Xh | Xt , Xt−1, . . .) = P(Xh | Xt ), h > t.
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Let A be a subset of Θ. The function

Pt (θ, h,A) = P(Xh ∈ A | Xt = θ), h > t

is called the transition probability function of the Markov process. If the transition
probability depends on h − t , but not on t , then the process has a stationary transition
distribution.

10.1 MARKOV CHAIN SIMULATION

Consider an inference problem with parameter vector θ and data X, where θ ∈ Θ.
To make inference, we need to know the distribution P(θ | X). The idea of Markov
chain simulation is to simulate a Markov process on Θ, which converges to a station-
ary transition distribution that is P(θ | X).

The key to Markov chain simulation is to create a Markov process whose station-
ary transition distribution is a specified P(θ | X) and run the simulation sufficiently
long so that the distribution of the current values of the process is close enough to
the stationary transition distribution. It turns out that, for a given P(θ | X), many
Markov chains with the desired property can be constructed. We refer to methods
that use Markov chain simulation to obtain the distribution P(θ | X) as Markov
Chain Monte Carlo (MCMC) methods.

The development of MCMC methods took place in various forms in the statistical
literature. Consider the problem of “missing value” in data analysis. Most statistical
methods discussed in this book were developed under the assumption of “complete
data” (i.e., there is no missing value). For example, in modeling daily volatility of
an asset return, we assume that the return data are available for all trading days in
the sample period except for weekends and holidays. What should we do if there is
a missing value?

Dempster, Laird, and Rubin (1977) suggest an iterative method called the EM
algorithm to solve the problem. The method consists of two steps. First, if the missing
value were available, then we could use methods of complete-data analysis to build a
volatility model. Second, given the available data and the fitted model, we can derive
the statistical distribution of the missing value. A simple way to fill in the missing
value is to use the conditional expectation of the derived distribution of the missing
value. In practice, one can start the method with an arbitrary value for the missing
value and iterate the procedure for many many times until convergence. The first
step of the prior procedure involves performing the maximum likelihood estimation
of a specified model and is called the M-step. The second step is to compute the
conditional expectation of the missing value and is called the E-step.

Tanner and Wong (1987) generalize the EM-algorithm in two ways. First, they
introduce the idea of iterative simulation. For instance, instead of using the con-
ditional expectation, one can simply replace the missing value by a random draw
from its derived conditional distribution. Second, they extend the applicability of
EM-algorithm by using the concept of data augmentation. By data augmentation, we
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mean adding auxiliary variables to the problem under study. It turns out that many of
the simulation methods can often be simplified or speeded up by data augmentation;
see the application sections of this chapter.

10.2 GIBBS SAMPLING

Gibbs sampling (or Gibbs sampler) of Geman and Geman (1984) and Gelfand and
Smith (1990) is perhaps the most popular MCMC method. We introduce the idea
of Gibbs sampling by using a simple problem with three parameters. Here the word
parameter is used in a very general sense. A missing data point can be regarded as a
parameter under the MCMC framework. Similarly, an unobservable variable such as
the “true” price of an asset can be regarded as N parameters when there are N trans-
action prices available. This concept of parameter is related to data augmentation and
becomes apparent when we discuss applications of the MCMC methods.

Denote the three parameters by θ1, θ2, and θ3. Let X be the collection of available
data and M the entertained model. The goal here is to estimate the parameters so
that the fitted model can be used to make inference. Suppose that the likelihood
function of the model is hard to obtain, but the three conditional distributions of a
single parameter given the others are available. In other words, we assume that the
following three conditional distributions are known:

f1(θ1 | θ2, θ3,X,M); f2(θ2 | θ3, θ1,X,M); f3(θ3 | θ1, θ2,X,M), (10.1)

where fi (θi | θ j 	=i ,X,M) denotes the conditional distribution of the parameter θi

given the data, the model, and the other two parameters. In application, we do not
need to know the exact forms of the conditional distributions. What is needed is the
ability to draw a random number from each of the three conditional distributions.

Let θ2,0 and θ3,0 be two arbitrary starting values of θ2 and θ3. The Gibbs sampler
proceeds as follows:

1. Draw a random sample from f1(θ1 | θ2,0, θ3,0,X,M). Denote the random
draw by θ1,1.

2. Draw a random sample from f2(θ2 | θ3,0, θ1,1,X,M). Denote the random
draw by θ2,1.

3. Draw a random sample from f3(θ3 | θ1,1, θ2,1,X,M). Denote the random
draw by θ3,1.

This completes a Gibbs iteration and the parameters become θ1,1, θ2,1, and θ3,1.
Next, using the new parameters as starting values and repeating the prior iteration

of random draws, we complete another Gibbs iteration to obtain the updated param-
eters θ1,2, θ2,2, and θ3,2. We can repeat the previous iterations for m times to obtain
a sequence of random draws:

(θ1,1, θ2,1, θ3,1), . . . , (θ1,m, θ2,m , θ3,m).
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Under some regularity conditions, it can be shown that, for a sufficiently large m,
(θ1,m, θ2,m , θ3,m) is approximately equivalent to a random draw from the joint dis-
tribution f (θ1, θ2, θ3 | X,M) of the three parameters. The regularity conditions are
weak; they essentially require that for an arbitrary starting value (θ1,0, θ2,0, θ3,0),
the prior Gibbs iterations have a chance to visit the full parameter space. The actual
convergence theorem involves using the Markov Chain theory; see Tierney (1994).

In practice, we use a sufficiently large n and discard the first m random draws of
the Gibbs iterations to form a Gibbs sample, say

(θ1,m+1, θ2,m+1, θ3,m+1), . . . , (θ1,n, θ2,n, θ3,n). (10.2)

Since the previous realizations form a random sample from the joint distribution
f (θ1, θ2, θ3 | X,M), they can be used to make inference. For example, a point esti-
mate of θi and its variance are

θ̂i = 1

n − m

n∑
j=m+1

θi, j , σ̂ 2
i = 1

n − m − 1

n∑
j=m+1

(θi, j − θ̂i )
2. (10.3)

The Gibbs sample in Eq. (10.2) can be used in many ways. For example, if one is
interested in testing the null hypothesis Ho : θ1 = θ2 versus the alternative hypoth-
esis Ha : θ1 	= θ2, then she can simply obtain point estimate of θ = θ1 − θ2 and its
variance as

θ̂ = 1

n − m

n∑
j=m+1

(θ1, j − θ2, j ), σ̂ 2 = 1

n − m − 1

n∑
j=m+1

(θ1, j − θ2, j − θ̂ )2.

The null hypothesis can then be tested by using the conventional t ratio statistic
t = θ̂/σ̂ .

Remark: The first m random draws of a Gibbs sampling, which are discarded,
are commonly referred to as the burn-ins sample. The burn-ins are used to ensure
that the Gibbs sample in Eq. (10.2) is indeed close enough to a random sample from
the joint distribution f (θ1, θ2, θ3 | X,M).

Remark: The method discussed before consists of running a single long chain
and keeping all random draws after the burn-ins to obtain a Gibbs sample. Alterna-
tively, one can run many relatively short chains using different starting values and a
relatively small n. The random draw of the last Gibbs iteration in each chain is then
used to form a Gibbs sample.

From the prior introduction, Gibbs sampling has the advantage to decompose a
high-dimensional estimation problem into several lower dimensional ones via full
conditional distributions of the parameters. At the extreme, a high-dimensional prob-
lem with N parameters can be solved iteratively by using N univariate conditional
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distributions. This property makes the Gibbs sampling simple and widely applica-
ble. However, it is often not efficient to reduce all the Gibbs draws into a univari-
ate problem. When parameters are highly correlated, it pays to draw them jointly.
Consider the three-parameter illustrative example. If θ1 and θ2 are highly corre-
lated, then one should employ the conditional distributions f (θ1, θ2 | θ3,X,M) and
f3(θ3 | θ1, θ2,X,M) whenever possible. A Gibbs iteration then consists of (a) draw-
ing jointly (θ1, θ2) given θ3, and (b) drawing θ3 given (θ1, θ2). For more information
on the impact of parameter correlations on the convergence rate of a Gibbs sampler,
see Liu, Wong, and Kong (1994).

In practice, convergence of a Gibbs sample is an important issue. The theory only
states that the convergence occurs when the number of iterations m is sufficiently
large. It provides no specific guidance for choosing m. Many methods have been
devised in the literature for checking the convergence of a Gibbs sample. But there is
no consensus on which method performs best. In fact, none of the available methods
can guarantee 100% that the Gibbs sample under study has converged for all applica-
tions. Performance of a checking method often depends on the problem at hand. Care
must be exercised in a real application to ensure that there is no obvious violation of
the convergence requirement; see Carlin and Louis (2000) and Gelman et al. (1995)
for convergence checking methods. In application, it is important to repeat the Gibbs
sampling several times with different starting values to ensure that the algorithm has
converged.

10.3 BAYESIAN INFERENCE

Conditional distributions play a key role in Gibbs sampling. In the statistical liter-
ature, these conditional distributions are referred to as conditional posterior distri-
butions because they are distributions of parameters given the data, other parameter
values, and the entertained model. In this section, we review some well-known pos-
terior distributions that are useful in using MCMC methods.

10.3.1 Posterior Distributions

There are two approaches to statistical inference. The first approach is the classical
approach that bases on the maximum likelihood principle. Here a model is estimated
by maximizing the likelihood function of the data, and the fitted model is used to
make inference. The other approach is Bayesian inference that combines prior belief
with data to obtain posterior distributions on which statistical inference is based.
Historically, there were heated debates between the two schools of statistical infer-
ence. Yet both approaches have proved to be useful and are now widely accepted.
The methods discussed so far in this book belong to the classical approach. How-
ever, Bayesian solutions exist for all of the problems considered. This is particularly
so in recent years with the advances in MCMC methods, which greatly improve the
feasibility of Bayesian analysis. Readers can revisit the previous chapters and derive
MCMC solutions for the problems considered. In most cases, the Bayesian solutions
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are similar to what we had before. In some cases, the Bayesian solutions might be
advantageous. For example, consider the calculation of Value at Risk in Chapter 7.
A Bayesian solution can easily take into consideration the parameter uncertainty in
VaR calculation. However, the approach requires intensive computation.

Let θ be the vector of unknown parameters of an entertained model and X be the
data. Bayesian analysis seeks to combine knowledge about the parameters with the
data to make inference. Knowledge of the parameters is expressed by specifying a
prior distribution for the parameters, which is denoted by P(θ). For a given model,
denote the likelihood function of the data by f (X | θ). Then by the definition of
conditional probability,

f (θ | X) = f (θ,X)
f (X)

= f (X | θ)P(θ)
f (X)

, (10.4)

where the marginal distribution f (X) can be obtained by

f (X) =
∫

f (X,θ)dθ =
∫

f (X | θ)P(θ)dθ.

The distribution f (θ | X) in Eq. (10.4) is called the posterior distribution of θ. In
general, we can use Bayes’ rule to obtain

f (θ | X) ∝ f (X | θ)P(θ), (10.5)

where P(θ) is the prior distribution and f (X | θ) is the likelihood function. From
Eq. (10.5), making statistical inference based on the likelihood function f (X | θ)
amounts to using Bayesian approach with a constant prior distribution.

10.3.2 Conjugate Prior Distributions

Obtaining the posterior distribution in Eq. (10.4) is not simple in general, but there
are cases in which the prior and posterior distributions belong to the same family of
distributions. Such a prior distribution is called a conjugate prior distribution. For
MCMC methods, use of conjugate priors means that a closed-form solution for the
conditional posterior distributions is available. Random draws of the Gibbs sampler
can then be obtained by using the commonly available computer routines of proba-
bility distributions. In what follows, we review some well-known conjugate priors.
For more information, readers are referred to textbooks on Bayesian statistics (e.g.,
DeGroot, 1970, Chapter 9).

Result 1: Suppose that x1, . . . , xn form a random sample from a normal dis-
tribution with mean µ, which is unknown, and variance σ 2, which is known and
positive. Suppose that the prior distribution of µ is a normal distribution with mean
µo and variance σ 2

o . Then the posterior distribution of µ given the data and prior is
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normal with mean µ∗ and variance σ 2∗ given by

µ∗ = σ 2µo + nσ 2
o x̄

σ 2 + nσ 2
o

and σ 2∗ = σ 2σ 2
o

σ 2 + nσ 2
o
,

where x̄ = ∑n
i=1 xi/n is the sample mean.

In Bayesian analysis, it is often convenient to use the precision parameter η =
1/σ 2 (i.e., the inverse of the variance σ 2). Denote the precision parameter of the
prior distribution by ηo = 1/σ 2

o and that of the posterior distribution by η∗ = 1/σ 2∗ .
Then Result 1 can be rewritten as

η∗ = ηo + nη and µ∗ = ηo

η∗
× µo + nη

η∗
× x̄ .

For the normal random sample considered, data information about µ is contained in
the sample mean x̄ , which is the sufficient statistic of µ. The precision of x̄ is n/σ 2 =
nη. Consequently, Result 1 says that (a) precision of the posterior distribution is
the sum of the precisions of the prior and the data, and (b) the posterior mean is a
weighted average of the prior mean and sample mean with weight proportional to
the precision. The two formulas also show that the contribution of prior distribution
is diminishing as the sample size n increases.

A multivariate version of Result 1 is particularly useful in MCMC methods when
linear regression models are involved; see Box and Tiao (1973).

Result 1a: Suppose that x1, . . . , xn form a random sample from a multivariate
normal distribution with mean vector µ and a known covariance matrix Σ. Suppose
also that the prior distribution of µ is multivariate normal with mean vector µo and
covariance matrix Σo. Then the posterior distribution ofµ is also multivariate normal
with mean vector µ∗ and covariance matrix Σ∗, where

Σ−1∗ = Σ−1
o + nΣ−1 and µ∗ = Σ∗(Σ−1

o µo + nΣ−1x̄),

where x̄ = ∑n
i=1 xi/n is the sample mean, which is distributed as a multivariate

normal with mean µ and covariance matrix Σ/n. Note that nΣ−1 is the precision
matrix of x̄ and Σ−1

o is the precision matrix of the prior distribution.
A random variable η has a gamma distribution with positive parameters α and β

if its probability density function is

f (η | α, β) = βα

�(α)
ηα−1e−βη, η > 0,

where �(α) is a Gamma function. For this distribution, E(η) = α/β and Var(η) =
α/β2.
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Result 2: Suppose that x1, . . . , xn form a random sample from a normal distri-
bution with a given mean µ and an unknown precision η. If the prior distribution of η
is a gamma distribution with positive parameters α and β, then the posterior distribu-
tion of η is a gamma distribution with parameters α+(n/2) and β+∑n

i=1(xi −µ)2/2.
A random variable θ has a beta distribution with positive parameters α and β if

its probability density function is

f (θ | α, β) = �(α + β)

�(α)�(β)
θα−1(1 − θ)β−1, 0 < θ < 1.

The mean and variance of θ are E(θ) = α/(α+β) and Var(θ) = αβ/[(α+β)2(α+
β + 1)].

Result 3: Suppose that x1, . . . , xn form a random sample from a Bernoulli dis-
tribution with parameter θ . If the prior distribution of θ is a beta distribution with
given positive parameters α and β, then the posterior of θ is a beta distribution with
parameters α +∑n

i=1 xi and β + n −∑n
i=1 xi .

Result 4: Suppose that x1, . . . , xn form a random sample from a Poisson dis-
tribution with parameter λ. Suppose also that the prior distribution of λ is a gamma
distribution with given positive parameters α and β. Then the posterior distribution
of λ is a gamma distribution with parameters α +∑n

i=1 xi and β + n.

Result 5: Suppose that x1, . . . , xn form a random sample from an exponential
distribution with parameter λ. If the prior distribution of λ is a gamma distribution
with given positive parameters α and β, then the posterior distribution of λ is a
gamma distribution with parameters α + n and β +∑n

i=1 xi .
A random variable X has a negative binomial distribution with parameters m and

λ, where m > 0 and 0 < λ < 1, if X has a probability mass function

p(n | m, λ) =


(

m + n − 1
n

)
λm(1 − λ)n if n = 0, 1, . . . ,

0 otherwise.

A simple example of negative binomial distribution in finance is how many MBA
graduates a firm must interview before finding exactly m “right candidates” for its
m openings, assuming that the applicants are independent and each applicant has a
probability λ of being a perfect fit. Denote the total number of interviews by Y . Then
X = Y − m is distributed as a negative binomial with parameters m and λ.

Result 6: Suppose that x1, . . . , xn form a random sample from a negative bino-
mial distribution with parameters m and λ, where m is positive and fixed. If the prior
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distribution of λ is a beta distribution with positive parameters α and β, then the pos-
terior distribution of λ is a beta distribution with parameters α+mn and β+∑n

i=1 xi .
Next we consider the case of a normal distribution with an unknown mean µ

and an unknown precision η. The two-dimensional prior distribution is partitioned as
P(µ, η) = P(µ | η)P(η).

Result 7: Suppose that x1, . . . , xn form a random sample from a normal distri-
bution with an unknown mean µ and an unknown precision η. Suppose also that the
conditional distribution of µ given η = ηo is a normal distribution with mean µo

and precision τoηo and the marginal distribution of η is a gamma distribution with
positive parameters α and β. Then the conditional posterior distribution of µ given
η = ηo is a normal distribution with mean µ∗ and precision η∗,

µ∗ = τoµo + nx̄

τo + n
and η∗ = (τo + n)ηo,

where x̄ = ∑n
i=1 xi/n is the sample mean, and the marginal posterior distribution of

η is a gamma distribution with parameters α + (n/2) and β∗, where

β∗ = β + 1

2

n∑
i=1

(xi − x̄)2 + τon(x̄ − µo)
2

2(τo + n)
.

When the conditional variance of a random variable is of interest, inverted chi-
squared distribution (or inverse chi-squared) is often used. A random variable Y
has an inverted chi-squared distribution with v degrees of freedom if 1/Y follows
a chi-squared distribution with the same degrees of freedom. The probability density
function of Y is

f (y | v) = 2−v/2

�(v/2)
y−(v/2+1)e−1/(2y), y > 0.

For this distribution, we have E(Y ) = 1/(v − 2) if v > 2 and Var(Y ) = 2/[(v −
2)2(v − 4)] if v > 4.

Result 8: Suppose that a1, . . . , an form a random sample from a normal distri-
bution with mean zero and variance σ 2. Suppose also that the prior distribution of σ 2

is an inverted chi-squared distribution with v degrees of freedom [i.e., (vλ)/σ 2 ∼ χ2
v ,

where λ > 0]. Then the posterior distribution of σ 2 is also an inverted chi-squared
distribution with v + n degrees of freedom—that is, (vλ+∑n

i=1 a2
i )/σ

2 ∼ χ2
v+n .

10.4 ALTERNATIVE ALGORITHMS

In many applications, there are no closed-form solutions for the conditional posterior
distributions. But many clever alternative algorithms have been devised in the statis-
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tical literature to overcome this difficulty. In this section, we discuss some of these
algorithms.

10.4.1 Metropolis Algorithm

This algorithm is applicable when the conditional posterior distribution is known
except for a normalization constant; see Metropolis and Ulam (1949) and Metropo-
lis et al. (1953). Suppose that we want to draw a random sample from the distribu-
tion f (θ | X), which contains a complicated normalization constant so that a direct
draw is either too time-consuming or infeasible. But there exists an approximate
distribution for which random draws are easily available. The Metropolis algorithm
generates a sequence of random draws from the approximate distribution whose dis-
tributions converge to f (θ | X). The algorithm proceeds as follows:

1. Draw a random starting value θ0 such that f (θ0 | X) > 0.
2. For t = 1, 2, . . .

(a) Draw a candidate sample θ∗ from a known distribution at iteration t
given the previous draw θt−1. Denote the known distribution by Jt (θt |
θt−1), which is called a jumping distribution in Gelman et al. (1995).
The jumping distribution must be symmetric—that is, Jt (θi | θ j ) =
Jt (θ j | θi ) for all θi , θ j , and t .

(b) Calculate the ratio

r = f (θ∗ | X)
f (θt−1 | X)

.

(c) Set

θt =
{
θ∗ with probability min(r, 1)
θt−1 otherwise.

Under some regularity conditions, the sequence {θt } converges in distribution to
f (θ | X); see Gelman et al. (1995).

Implementation of the algorithm requires the ability to calculate the ratio r for
all θ∗ and θt−1, to draw θ∗ from the jumping distribution, and to draw a random
realization from a uniform distribution to determine the acceptance or rejection of
θ∗. The normalization constant of f (θ | X) is not needed because only ratio is used.

The acceptance and rejection rule of the algorithm can be stated as follows: (i) if
the jump from θt−1 to θ∗ increases the conditional posterior density, then accept θ∗
as θt ; (ii) if the jump decreases the posterior density, then set θt = θ∗ with probabil-
ity equal to the density ratio r , and set θt = θt−1 otherwise. Such a procedure seems
reasonable.

Examples of symmetric jumping distributions include the normal and Student-t
distributions for the mean parameter. For a given covariance matrix, we have f (θi |
θ j ) = f (θ j | θi ), where f (θ | θo) denotes a multivariate normal density function
with mean vector θo.
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10.4.2 Metropolis–Hasting Algorithm

Hasting (1970) generalizes the Metropolis algorithm in two ways. First, the jumping
distribution does not have to be symmetric. Second, the jumping rule is modified to

r = f (θ∗ | X)/Jt (θ∗ | θt−1)

f (θt−1 | X)/Jt (θt−1 | θ∗)
= f (θ∗ | X)Jt (θt−1 | θ∗)

f (θt−1 | X)Jt (θ∗ | θt−1)
.

This modified algorithm is referred to as the Metropolis–Hasting algorithm.

10.4.3 Griddy Gibbs

In financial applications, an entertained model may contain some nonlinear parame-
ters (e.g., the moving average parameters in an ARMA model or the GARCH param-
eters in a volatility model). Since conditional posterior distributions of nonlinear
parameters do not have a closed-form expression, implementing a Gibbs sampler in
this situation may become complicated even with the Metropolis–Hasting algorithm.
Tanner (1996) describes a simple procedure to obtain random draws in a Gibbs sam-
pling when the conditional posterior distribution is univariate. The method is called
the Griddy Gibbs sampler and is widely applicable. However, the method could be
inefficient in a real application.

Let θi be a scalar parameter with conditional posterior distribution f (θi | X,θ−i ),
where θ−i is the parameter vector after removing θi . For instance, if θ = (θ1, θ2, θ3)

′,
then θ−1 = (θ2, θ3)

′. The Griddy Gibbs proceeds as follows:

1. Select a grid of points from a properly selected interval of θi , say θi1 ≤ θi2 ≤
· · · ≤ θim . Evaluate the conditional posterior density function to obtain w j =
f (θi j | X,θ−i ) for j = 1, . . . ,m.

2. Use w1, . . . , wm to obtain an approximation to the inverse cumulative distri-
bution function (CDF) of f (θi | X,θ−i ).

3. Draw a uniform (0, 1) random variate and transform the observation via the
approximate inverse CDF to obtain a random draw for θi .

Some remarks on the Griddy Gibbs are in order. First, the normalization con-
stant of the conditional posterior distribution f (θi | X,θ−i ) is not needed because
the inverse CDF can be obtained from {w j }m

j=1 directly. Second, a simple approx-
imation to the inverse CDF is a discrete distribution for {θi j }m

j=1 with probabil-
ity p(θi j ) = w j/

∑m
v=1wv . Third, in a real application, selection of the interval

[θi1, θim ] for the parameter θi must be checked carefully. A simple checking pro-
cedure is to consider the histogram of the Gibbs draws of θi . If the histogram indi-
cates substantial probability around θi1 or θim , then the interval must be expanded.
However, if the histogram shows a concentration of probability inside the interval
[θi1, θim ], then the interval is too wide and can be shortened. If the interval is too
wide, then the Griddy Gibbs becomes inefficient because most of w j would be zero.
Finally, the Griddy Gibbs or Metropolis–Hasting algorithm can be used in a Gibbs
sampling to obtain random draws of some parameters.
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10.5 LINEAR REGRESSION WITH TIME-SERIES ERRORS

We are ready to consider some specific applications of MCMC methods. Exam-
ples discussed in the next few sections are for illustrative purposes only. The goal
here is to highlight the applicability and usefulness of the methods. Understanding
these examples can help readers gain insights into applications of MCMC methods
in finance.

The first example is to estimate a regression model with serially correlated errors.
This is a topic discussed in Chapter 2, where we use SCA to perform the estimation.
A simple version of the model is

yt = β0 + β1x1t + · · · + βk xkt + zt

zt = φzt−1 + at ,

where yt is the dependent variable, xit are explanatory variables that may contain
lagged values of yt , and zt follows a simple AR(1) model with {at } being a sequence
of independent and identically distributed normal random variables with mean zero
and variance σ 2. Denote the parameters of the model by θ = (β′, φ, σ 2)′, where
β = (β0, β1, . . . , βk)

′, and let xt = (1, x1t , . . . , xkt )
′ be the vector of all regressors

at time t , including a constant of unity. The model becomes

yt = x′
tβ+ zt , zt = φzt−1 + at , t = 1, . . . , n, (10.6)

where n is the sample size.
A natural way to implement Gibbs sampling in this case is to iterate between

regression estimation and time-series estimation. If the time-series model is known,
then we can estimate the regression model easily by using the least squares method.
However, if the regression model is known, then we can obtain the time series zt by
using zt = yt − x′

tβ and use the series to estimate the AR(1) model. Therefore, we
need the following conditional posterior distributions:

f (β | Y,X, φ, σ 2); f (φ | Y,X,β, σ 2); f (σ 2 | Y,X,β, φ),

where Y = (y1, . . . , yn)
′ and X denotes the collection of all observations of explana-

tory variables.
We use conjugate prior distributions to obtain closed-form expressions for the

conditional posterior distributions. The prior distributions are

β ∼ N (βo,Σo), φ ∼ N (φo, σ
2
o ),

vλ

σ 2
∼ χ2

v , (10.7)

where again ∼ denotes distribution, βo, Σo, λ, v, φo, and σ 2
o are known quanti-

ties. These quantities are referred to as hyperparameters in Bayesian inference. Their
exact values depend on the problem at hand. Typically, we assume that βo = 0,
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φo = 0, and Σo is a diagonal matrix with large diagonal elements. The prior dis-
tributions in Eq. (10.7) are assumed to be independent of each other. Thus, we use
independent priors based on the partition of the parameter vector θ.

The conditional posterior distribution f (β | Y,X, φ, σ 2) can be obtained by
using Result 1a of Section 10.3. Specifically, given φ, we define

yo,t = yt − φyt−1, xo,t = xt − φxt−1.

Using Eq. (10.6), we have

yo,t = β′xo,t + at , t = 2, . . . , n. (10.8)

Under the assumption of {at }, Eq. (10.8) is a multiple linear regression. Therefore,
information of the data about the parameter vector β is contained in its least squares
estimate

β̂ =
(

n∑
t=2

xo,t x′
o,t

)−1 ( n∑
t=2

xo,t yo,t

)
,

which has a multivariate normal distribution

β̂ ∼ N

β, σ 2

(
n∑

t=2

xo,t x′
o,t

)−1
 .

Using Results 1a, the posterior distribution of β, given the data, φ, and σ 2, is multi-
variate normal. We write the result as

(β | Y,X, φ, σ ) ∼ N (β∗,Σ∗), (10.9)

where the parameters are given by

Σ−1∗ =
∑n

t=2 xo,t x′
o,t

σ 2
+ Σ−1

o , β∗ = Σ∗

(∑n
t=2 xo,t x′

o,t

σ 2
β̂+ Σ−1

o βo

)
.

Next consider the conditional posterior distribution of φ given β, σ 2, and the data.
Because β is given, we can calculate zt = yt − β′xt for all t and consider the AR(1)
model

zt = φzt−1 + at , t = 2, . . . , n.

The information of the likelihood function about φ is contained in the least squares
estimate

φ̂ =
(

n∑
t=2

z2
t−1

)−1 ( n∑
t=2

zt−1zt

)
,
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which is normally distributed with mean φ and variance σ 2(
∑n

t=2 z2
t−1)

−1. Based on
Result 1, the posterior distribution of φ is also normal with mean φ∗ and variance
σ 2∗ , where

σ−2∗ =
∑n

t=2 z2
t−1

σ 2
+ σ−2

o , φ∗ = σ 2∗

(∑n
t=2 z2

t−1

σ 2
φ̂ + σ−2

o φo

)
. (10.10)

Finally, turn to the posterior distribution of σ 2 given β, φ, and the data. Because
β and φ are known, we can calculate

at = zt − φzt−1, zt = yt − β′xt , t = 2, . . . , n.

By Result 8 of Section 10.3, the posterior distribution of σ 2 is an inverted chi-squared
distribution—that is,

vλ+∑n
t=2 a2

t

σ 2
∼ χ2

v+(n−1), (10.11)

where χ2
k denotes a chi-squared distribution with k degrees of freedom.

Using the three conditional posterior distributions in Eqs. (10.9)–(10.11), we can
estimate Eq. (10.6) via Gibbs sampling as follows:

1. Specify the hyperparameter values of the priors in Eq. (10.7).

2. Specify arbitrary starting values for β, φ, and σ 2 (e.g., the ordinary least
squares estimate of β without time-series errors).

3. Use the multivariate normal distribution in Eq. (10.9) to draw a random real-
ization for β.

4. Use the univariate normal distribution in Eq. (10.10) to draw a random realiza-
tion for φ.

5. Use the chi-squared distribution in Eq. (10.11) to draw a random realization
for σ 2.

Repeat Steps 3–5 for many iterations to obtain a Gibbs sample. The sample means
are then used as point estimates of the parameters of model (10.6).

Example 10.1. As an illustration, we revisit the example of U.S. weekly
interest rates of Chapter 2. The data are the 1-year and 3-year Treasury constant
maturity rates from January 5, 1962 to September 10, 1999 and are obtained from the
Federal Reserve Bank of St Louis. Because of unit-root nonstationarity, the depen-
dent and independent variables are

1. c3t = r3t − r3,t−1, which is the weekly change in 3-year maturity rate,

2. c1t = r1t − r1,t−1, which is the weekly change in 1-year maturity rate,
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where the original interest rates rit are measured in percentages. In Chapter 2, we
employed a linear regression model with an MA(1) error for the data. Here we con-
sider an AR(2) model for the error process. Using the traditional approach, we obtain
the model

c3t = 0.0002 + 0.782c1t + zt , zt = 0.205zt−1 − 0.068zt−2 + at , (10.12)

where σ̂a = 0.067. Standard errors of the coefficient estimates of Eq. (10.12) are
0.0017, 0.008, 0.023, and 0.023, respectively. Except for a marginally significant
residual ACF at lag 6, the prior model seems adequate.

Writing the model as

c3t = β0 + β1c1t + zt , zt = φ1zt−1 + φ2zt−2 + at , (10.13)

where {at } is an independent sequence of N (0, σ 2) random variables, we estimate
the parameters by Gibbs sampling. The prior distributions used are

β ∼ N (0, 4I2), φ ∼ N [0, diag(0.25, 0.16)], (vλ)/σ 2 = (10 × 0.1)/σ 2 ∼ χ2
10,

where I2 is the 2 × 2 identity matrix. The initial parameter estimates are obtained by
the ordinary least squares method (i.e., by using a two-step procedure of fitting the
linear regression model first, then fitting an AR(2) model to the regression residuals).
Since the sample size 1966 is large, the initial estimates are close to those given in
Eq. (10.12). We iterated the Gibbs sampling for 2100 iterations, but discard results of
the first 100 iterations. Table 10.1 gives the posterior means and standard errors of the
parameters. Figure 10.1 shows the histogram of the marginal posterior distribution
of each parameter.

We repeated the Gibbs sampling with different initial values, but obtained similar
results. The Gibbs sampling appears to have converged. From Table 10.1, the poste-
rior means are close to the estimates of Eq. (10.12) except for the coefficient of zt−2.
However, the posterior standard errors of φ1 and φ2 are relatively large, indicating
uncertainty in these two estimates. The histograms of Figure 10.1 are informative.
In particular, they show that the distributions of φ̂1 and φ̂2 have not converged to the
asymptotic normality; the distributions are skewed to the right. However, the asymp-
totic normality of β̂0 and β̂1 seems reasonable.

Table 10.1. Posterior Means and Standard Errors of Model
(10.13) Estimated by a Gibbs Sampling with 2100 Iterations.
The Results Are Based on the Last 2000 Iterations and the
Prior Distributions Are Given in the Text.

Parameter β0 β1 φ1 φ2 σ

Mean 0.025 0.784 0.305 0.032 0.074
St. Error 0.024 0.009 0.089 0.087 0.003
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Figure 10.1. Histograms of Gibbs draws for the model in Eq. (10.13) with 2100 iterations.
The results are based on the last 2000 draws. Prior distributions and starting parameter values
are given in the text.

10.6 MISSING VALUES AND OUTLIERS

In this section, we discuss MCMC methods for handling missing values and detect-
ing additive outliers. Let {yt }n

t=1 be an observed time series. A data point yh is an
additive outlier if

yt =
{

xh + ω if t = h
xt otherwise,

(10.14)

where ω is the magnitude of the outlier and xt is an outlier-free time series. Examples
of additive outliers include recording errors (e.g., typos and measurement errors).
Outliers can seriously affect time-series analysis because they may induce substantial
biases in parameter estimation and lead to model misspecification.

Consider a time series xt and a fixed time index h. We can learn a lot about xh by
treating it as a missing value. If the model of xt were known, then we could derive
the conditional distribution of xh given the other values of the series. By comparing
the observed value yh with the derived distribution of xh , we can determine whether
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yh can be classified as an additive outlier. Specifically, if yh is a value that is likely
to occur under the derived distribution, then yh is not an additive outlier. However,
if the chance to observe yh is very small under the derived distribution, then yh

can be classified as an additive outlier. Therefore, detection of additive outliers and
treatment of missing values in time-series analysis are based on the same idea.

In the literature, missing values in a time series can be handled by using either the
Kalman filter or MCMC methods; see Jones (1980) and McCulloch and Tsay (1994).
Outlier detection has also been carefully investigated; see Chang, Tiao, and Chen
(1988), Tsay (1988), Tsay, Peña, and Pankratz (2000), and the references therein. The
outliers are classified into four categories depending on the nature of their impacts
on the time series. Here we focus on additive outliers.

10.6.1 Missing Values

For ease in presentation, consider an AR(p) time series

xt = φ1xt−1 + · · · + φpxt−p + at , (10.15)

where {at } is a Gaussian white noise series with mean zero and variance σ 2. Suppose
that the sampling period is from t = 1 to t = n, but the observation xh is missing,
where 1 < h < n. Our goal is to estimate the model in the presence of a missing
value.

In this particular instance, the parameters are θ = (φ′, xh, σ
2)′, where φ =

(φ1, . . . , φp)
′. Thus, we treat the missing value xh as an unknown parameter. If we

assume that the prior distributions are

φ ∼ N (φo,Σo), xh ∼ N (µo, σ
2
o ),

vλ

σ 2
∼ χ2

v ,

where the hyperparameters are known, then the conditional posterior distributions
f (φ | X, xh, σ

2) and f (σ 2 | X, xh,φ) are exactly as those given in the previous
section, where X denotes the observed data. The conditional posterior distribution
f (xh | X,φ, σ 2) is univariate normal with mean µ∗ and variance σ 2

h . These two
parameters can be obtained by using a linear regression model. Specifically, given the
model and the data, xh is only related to {xh−p, . . . , xh−1, xh+1, . . . , xh+p}. Keeping
in mind that xh is an unknown parameter, we can write the relationship as follows:

1. For t = h, the model says

xh = φ1xh−1 + · · · + φpxh−p + ah .

Let yh = φ1xh−1 + · · · + φpxh−p and bh = −ah , the prior equation can be
written as

yh = xh + bh = φ0xh + bh,

where φ0 = 1.
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2. For t = h + 1, we have

xh+1 = φ1xh + φ2xh−1 + · · · + φpxh+1−p + ah+1.

Let yh+1 = xh+1 − φ2xh−1 − · · · − φpxh+1−p and bh+1 = ah+1, the prior
equation can be written as

yh+1 = φ1xh + bh+1.

3. In general, for t = h + j with j = 1, . . . , p, we have

xh+ j = φ1xh+ j−1 + · · · + φ j xh + φ j+1xh−1 + · · · + φpxh+ j−p + ah+ j .

Let yh+ j = xh+ j −φ1xh+ j−1 −· · ·−φ j−1xh+1 −φ j+1xh−1 −· · ·−φpxh+ j−p

and bh+ j = ah+ j . The prior equation reduces to

yh+ j = φ j xh + bh+ j .

Consequently, for an AR(p)model, the missing value xh is related to the model, and
the data in p + 1 equations

yh+ j = φ j xh + bh+ j , j = 0, . . . , p, (10.16)

where φ0 = 1. Since a normal distribution is symmetric with respective to its mean,
ah and −ah have the same distribution. Consequently, Eq. (10.16) is a special simple
linear regression model with p + 1 data points. The least squares estimate of xh and
its variance are

x̂h =
∑p

j=0 φ j yh+ j∑p
j=0 φ

2
j

, Var(̂xh) = σ 2∑p
j=0 φ

2
j

.

For instance, when p = 1, we have x̂h = φ1

1+φ2
1
(xh−1 + xh+1), which is referred to

as the filtered value of xh . Because a Gaussian AR(1) model is time reversible, equal
weights are applied to the two neighboring observations of xh to obtain the filtered
value.

Finally, using Result 1 of Section 10.3, we obtain that the posterior distribution of
xh is normal with mean µ∗ and variance σ 2∗ , where

µ∗ = σ 2µo + σ 2
o (
∑p

j=0 φ
2
j )̂xh

σ 2 + σ 2
o (
∑p

j=0 φ
2
j )

, σ 2∗ = σ 2σ 2
o

σ 2 + σ 2
o
∑p

j=0 φ
2
j

. (10.17)

Missing values may occur in patches, resulting in the situation of multiple consec-
utive missing values. These missing values can be handled in two ways. First, we can
generalize the prior method directly to obtain a solution for multiple filtered values.
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Consider, for instance, the case that xh and xh+1 are missing. These missing values
are related to {xh−p, . . . , xh−1; xh+2, . . . , xh+p+1}. We can define a dependent vari-
able yh+ j in a similar manner as before to set up a multiple linear regression with
parameters xh and xh+1. The least squares method is then used to obtain estimates
of xh and xh+1. Combining with the specified prior distributions, we have a bivari-
ate normal posterior distribution for (xh, xh+1)

′. In Gibbs sampling, this approach
draws the consecutive missing values jointly. Second, we can apply the result of a
single missing value in Eq. (10.17) multiple times within a Gibbs iteration. Again
consider the case of missing xh and xh+1. We can employ the conditional posterior
distributions f (xh | X, xh+1,φ, σ

2) and f (xh+1 | X, xh,φ, σ
2) separately. In Gibbs

sampling, this means that we draw the missing value one at a time.
Because xh and xh+1 are correlated in a time series drawing them jointly is pre-

ferred in a Gibbs sampling. This is particularly so if the number of consecutive miss-
ing values is large. Drawing one missing value at a time works well if the number of
missing values is small.

Remark: In the previous discussion, we assume h − p ≥ 1 and h + p ≤ n. If
h is close to the end points of the sample period, the number of data points available
in the linear regression model must be adjusted.

10.6.2 Outlier Detection

Detection of additive outliers in Eq. (10.14) becomes straightforward under the
MCMC framework. Except for the case of a patch of additive outliers with similar
magnitudes, the simple Gibbs sampler of McCulloch and Tsay (1994) seems to work
well; see Justel, Peña, and Tsay (2001). Again we use an AR model to illustrate
the problem. The method applies equally well to other time series models when
the Metropolis–Hasting algorithm, or the Griddy Gibbs is used to draw values of
nonlinear parameters.

Assume that the observed time series is yt , which may contain some additive
outliers whose locations and magnitudes are unknown. We write the model for yt as

yt = δtβt + xt , t = 1, . . . , n, (10.18)

where {δt } is a sequence of independent Bernoulli random variables such that P(δt =
1) = ε and P(δt = 0) = 1 − ε, ε is a constant between 0 and 1, {βt } is a sequence
of independent random variables from a given distribution, and xt is an outlier-free
AR(p) time series,

xt = φ0 + φ1xt−1 + · · · + φpxt−p + at ,

where {at } is a Gaussian white noise with mean zero and variance σ 2. This model
seems complicated, but it allows additive outliers to occur at every time point. The
chance of being an outlier for each observation is ε.
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Under the model in Eq. (10.18), we have n data points, but there are 2n + p + 3
parameters—namely, φ = (φ0, . . . , φp)

′, δ = (δ1, . . . , δn)
′, β = (β1, . . . , βn)

′, σ 2,
and ε. The binary parameters δt are governed by ε and βt s are determined by the
specified distribution. The parameters δ and β are introduced by using the idea of
data augmentation with δt denoting the presence or absence of an additive outlier at
time t , and βt is the magnitude of the outlier at time t when it is present.

Assume that the prior distributions are

φ ∼ N (φo,Σo),
vλ

σ 2
∼ χ2

v , ε ∼ beta(γ1, γ2), βt ∼ N (0, ξ2),

where the hyperparameters are known. These are conjugate prior distributions. To
implement Gibbs sampling for model estimation with outlier detection, we need to
consider the conditional posterior distributions of

f (φ | Y, δ,β, σ 2), f (δh | Y, δ−h,β,φ, σ
2), f (βh | Y, δ,β−h,φ, σ

2),

f (ε | Y, δ), f (σ 2 | Y,φ, δ,β),

where 1 ≤ h ≤ n, Y denotes the data, and θ−i denotes that the i th element of θ is
removed.

Conditioned on δ and β, the outlier-free time series xt can be obtained by xt =
yt − δtβt . Information of the data about φ is then contained in the least squares
estimate

φ̂ =
(

n∑
t=p+1

xt−1x′
t−1

)−1 ( n∑
t=p+1

xt−1xt

)
,

where xt−1 = (1, xt−1, . . . , xt−p)
′, which is normally distributed with mean φ and

covariance matrix

Σ̂ = σ 2

(
n∑

t=p+1

xt−1x′
t−1

)−1

.

The conditional posterior distribution of φ is therefore multivariate normal with
mean φ∗ and covariance matrix Σ∗, which are given in Eq. (10.9) with β being
replaced by φ and xo,t by xt−1. Similarly, the conditional posterior distribution of
σ 2 is an inverted chi-squared distribution—that is,

vλ+∑n
t=p+1 a2

t

σ 2
∼ χ2

v+(n−p),

where at = xt − φ′xt−1 and xt = yt − δtβt .
The conditional posterior distribution of δh can be obtained as follows. First, δh is

only related to {y j , β j }h+p
j=h−p , {δ j }h+p

j=h−p with j 	= h, φ, and σ 2. More specifically,
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we have

x j = y j − δ jβ j , j 	= h.

Second, xh can assume two possible values: xh = yh − βh if δh = 1 and xh = yh

otherwise. Define

w j = x∗
j − φ0 − φ1x∗

j−1 − · · · − φpx∗
j−p, j = h, . . . , h + p,

where x∗
j = x j if j 	= h and x∗

h = yh . The two possible values of xh give rise to two
situations:

• Case I: δh = 0. Here the hth observation is not an outlier and x∗
h = yh = xh .

Hence, w j = a j for j = h, . . . , h + p. In other words, we have

w j ∼ N (0, σ 2), j = h, . . . , h + p.

• Case II: δh = 1. Now the hth observation is an outlier and x∗
h = yh = xh + βh .

The w j defined before is contaminated by βh . In fact, we have

wh ∼ N (βh, σ
2) and w j ∼ N (−φ j−hβh, σ

2), j = h + 1, . . . , h + p.

If we define ψ0 = −1 and ψi = φi for i = 1, . . . , p, then we have w j ∼
N (−ψ j−hβh, σ

2) for j = h, . . . , h + p.

Based on the prior discussion, we can summarize the situation as follows:

1. Case I: δh = 0 with probability 1 − ε. In this case, w j ∼ N (0, σ 2) for j =
h, . . . , h + p.

2. Case II: δh = 1 with probability ε. Here w j ∼ N (−ψ j−hβh, σ
2) for j =

h, . . . , h + p.

Since there are n data points, j cannot be greater than n. Let m = min(n, h + p).
The posterior distribution of δh is therefore

P(δh = 1 | Y, δ−h,β,φ, σ
2)

= ε exp[−∑m
j=h(w j + ψ j−hβh)

2/(2σ 2)]
ε exp[−∑m

j=h(w j + ψ j−hβh)2/(2σ 2)] + (1 − ε) exp[−∑m
j=h w

2
j/(2σ

2)] .

(10.19)

This posterior distribution is simply to compare the weighted values of likelihood
function under the two situations with weight being the probability of each situation.



416 MCMC METHODS

Finally, the posterior distribution of βh is as follows.

• If δh = 0, then yh is not an outlier and βh ∼ N (0, ξ2).

• If δh = 1, then yh is contaminated by an outlier with magnitude βh . The vari-
able w j defined before contains information of βh for j = h, h + 1, . . . ,min
(h + p, n). Specifically, we have w j ∼ N (−ψ j−hβh, σ

2) for j = h, h +
1, . . . ,min(h + p, n). The information can be put in a linear regression frame-
work as

w j = −ψ j−hβh + a j , j = h, h + 1, . . . ,min(h + p, n).

Consequently, the information is embedded in the least squares estimate

β̂h =
∑m

j=h −ψ j−hw j∑m
j=h ψ

2
j−h

, m = min(h + p, n),

which is normally distributed with mean βh and variance σ 2/(
∑m

j=h ψ
2
j−h). By

Result 1, the posterior distribution of βh is normal with mean β∗
h and variance

σ 2
h∗, where

β∗
h = −(∑m

j=h ψ j−hw j )ξ
2

σ 2 + (
∑m

j=h ψ
2
j−h)ξ

2
, σ 2

h∗ = σ 2ξ2

σ 2 + (
∑m

j=h ψ
2
j−h)ξ

2
.

Example 10.2. Consider the weekly change series of U.S. 3-year Treasury
constant maturity interest rate from March 18, 1988 to September 10, 1999 for 600
observations. The interest rate is in percentage and is a subseries of the dependent
variable c3t of Example 10.1. The time series is shown in Figure 10.2(a). If AR
models are entertained for the series, the partial autocorrelation function suggests an
AR(3) model and we obtain

c3t = 0.227c3,t−1 + 0.006c3,t−2 + 0.114c3,t−2 + at , σ̂ 2
a = 0.0128,

where standard errors of the coefficients are 0.041, 0.042, and 0.041, respectively.
The Ljung–Box statistics of the residuals show Q(12) = 11.4, which is insignificant
at the 5% level.

Next we apply the Gibbs sampling to estimate the AR(3) model and to detect
simultaneously possible additive outliers. The prior distributions used are

φ ∼ N (0, 0.25I3),
vλ

σ 2
= 5 × 0.00256

σ 2
∼ χ2

5 , γ1 = 5, γ2 = 95, ξ2 = 0.1,

where 0.00256 ≈ σ̂ 2/5 and ξ2 ≈ 9σ̂ 2. The expected number of additive outliers
is 5%. Using initial values ε = 0.05, σ 2 = 0.012, φ1 = 0.2, φ2 = 0.02, and
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Figure 10.2. Time plots of weekly change series of U.S. 3-year Treasury constant maturity
interest rate from March 18, 1988 to September 10, 1999: (a) the data, (b) the posterior prob-
ability of being an outlier, and (c) the posterior mean of outlier size. The estimation is based
on a Gibbs sampling with 1050 iterations, but results of the first 50 iterations are discarded.

φ3 = 0.1, we run the Gibbs sampling for 1050 iterations, but discard results of the
first 50 iterations. Using posterior means of the coefficients as parameter estimates,
we obtain the fitted model

c3t = 0.252c3,t−1 + 0.003c3,t−2 + 0.110c3,t−2 + at , σ̂ 2 = 0.0118,

where posterior standard deviations of the parameters are 0.046, 0.045, 0.046, and
0.0008, respectively. Thus, the Gibbs sampling produces results similar to that of
the maximum likelihood method. Figure 10.2(b) shows the time plot of posterior
probability of each observation being an additive outlier, and Figure 10.2(c) plots the
posterior mean of outlier magnitude. From the probability plot, some observations
have high probabilities of being an outlier. In particular, t = 323 has a probability
of 0.83 and the associated posterior mean of outlier magnitude is −0.304. This point
corresponds to May 20, 1994 when the c3t changed from 0.24 to −0.34 (i.e., about
a 0.6% drop in the weekly interest rate within two weeks). The point with second
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highest posterior probability of being an outlier is t = 201, which is January 17,
1992. The outlying posterior probability is 0.58 and the estimated outlier size is
0.176. At this second point, c3t changed from −0.02 to 0.33, corresponding to a
jump of about 0.35% in the weekly interest rate.

Remark: Outlier detection via Gibbs sampling requires intensive computation,
but the approach performs a joint estimation of model parameters and outliers. Yet
the traditional approach to outlier detection separates estimation from detection. It
is much faster in computation, but may produce spurious detections when multiple
outliers are present. For the data in Example 10.2, the SCA program also identifies
t = 323 and t = 201 as the two most significant additive outliers. The estimated
outlier sizes are −0.39 and 0.36, respectively.

10.7 STOCHASTIC VOLATILITY MODELS

An important financial application of MCMC methods is the estimation of stochastic
volatility models; see Jacquier, Polson, and Rossi (1994) and the references therein.
We start with a univariate stochastic volatility model. The mean and volatility equa-
tions of an asset return rt are

rt = β0 + β1x1t + · · · + βpx pt + at , at = √
htεt (10.20)

ln ht = α0 + α1 ln ht−1 + vt (10.21)

where {xit | i = 1, . . . , p} are explanatory variables available at time t − 1, β j s
are parameters, {εt } is a Gaussian white noise sequence with mean 0 and variance 1,
{vt } is also a Gaussian white noise sequence with mean 0 and variance σ 2

v , and {εt }
and {vt } are independent. The log transformation is used to ensure that ht is positive
for all t . The explanatory variables xit may include lagged values of the return (e.g.,
xit = rt−i ). In Eq. (10.21), we assume that |α1 | < 1 so that the log volatility process
ln ht is stationary. If necessary, a higher order AR(p) model can be used for ln ht .

Denote the coefficient vector of the mean equation by β = (β0, β1, . . . , βp)
′ and

the parameter vector of the volatility equation by ω = (α0, α1, σ
2
v )

′. Suppose that
R = (r1, . . . , rn)

′ is the collection of observed returns and X is the collection of
explanatory variables. Let H = (h1, . . . , hn)

′ be the vector of unobservable volatili-
ties. Here β andω are the “traditional” parameters of the model and H is an auxiliary
variable. Estimation of the model would be complicated via the maximum likelihood
method because the likelihood function is a mixture over the n-dimensional H dis-
tribution as

f (R | X,β,ω) =
∫

f (R | X,β,H) f (H | ω)dH.

However, under the Bayesian framework, the volatility vector H consists of aug-
mented parameters. Conditioning on H, we can focus on the probability distribution
functions f (R | H,β) and f (H | ω) and the prior distribution p(β,ω). We assume
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that the prior distribution can be partitioned as p(β,ω) = p(β)p(ω), that is, prior
distributions for the mean and volatility equations are independent. A Gibbs sam-
pling approach to estimating the stochastic volatility in Eqs. (10.20) and (10.21) then
involves drawing random samples from the following conditional posterior distribu-
tions:

f (β | R,X,H,ω), f (H | R,X,β,ω), f (ω | R,X,β,H).

In what follows, we give details of practical implementation of the Gibbs sampling
used.

10.7.1 Estimation of Univariate Models

Given H, the mean equation in Eq. (10.20) is a nonhomogeneous linear regression.
Dividing the equation by

√
ht , we can write the model as

ro,t = x′
o,tβ+ εt , t = 1, . . . , n, (10.22)

where ro,t = rt/
√

ht and xo,t = xt/
√

ht , with xt = (1, x1t , . . . , x pt )
′ being the vec-

tor of explanatory variables. Suppose that the prior distribution of β is multivariate
normal with mean βo and covariance matrix Ao. Then the posterior distribution of
β is also multivariate normal with mean β∗ and covariance matrix A∗. These two
quantities can be obtained as before via Result 1a and they are

A−1∗ =
n∑

t=1

xo,t x′
o,t + A−1

o , β∗ = A∗

(
n∑

t=1

xo,t ro,t + A−1
o βo

)
,

where it is understood that the summation starts with p + 1 if rt−p is the highest
lagged return used in the explanatory variables.

The volatility vector H is drawn element by element. The necessary conditional
posterior distribution is f (ht | R,X,H−t ,β,ω), which is produced by the normal
distribution of at and the lognormal distribution of the volatility,

f (ht | R,X,β,H−t ,ω)

∝ f (at | ht , rt , xt ,β) f (ht | ht−1,ω) f (ht+1 | ht ,ω)

∝ h−0.5
t exp[−(rt − x′

tβ)
2/(2ht)]h−1

t exp[−(ln ht − µt )
2/(2σ 2)]

∝ h−1.5
t exp[−(rt − x′

tβ)
2/(2ht)− (ln ht − µt )

2/(2σ 2)], (10.23)

whereµt = [α0(1−α1)+α1(ln ht+1+ln ht−1)]/(1+α2
1) and σ 2 = σ 2

v /(1+α2
1). Here

we have used the following properties: (a) at | ht ∼ N (0, ht ); (b) ln ht | ln ht−1 ∼
N (α0 + α1 ln ht−1, σ

2
v ); (c) ln ht+1 | ln ht ∼ N (α0 + α1 ln ht , σ

2
v ); (d) d ln ht =

h−1
t dht , where d denotes differentiation; and (e) the equality

(x − a)2 A + (x − b)2C = (x − c)2(A + C)+ (a − b)2 AC/(A + C)
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where c = (Aa + Cb)/(A + C) provided that A + C 	= 0. This equality is a scalar
version of Lemma 1 of Box and Tiao (1973, p. 418). In our application, A = 1,
a = α0+ln ht−1, C = α2

1, and b = (ln ht+1−α0)/α1. The term (a−b)2 AC/(A+C)
does not contain the random variable ht and, hence, is integrated out in the deriva-
tion of the conditional posterior distribution. Jacquier, Polson, and Rossi (1994) use
Metropolis algorithm to draw ht . We use Griddy Gibbs in this section, and the range
of ht is chosen to be a multiple of the unconditional sample variance of rt .

To draw random samples of ω, we partition the parameters as α = (α0, α1)
′

and σ 2
v . The prior distribution of ω is also partitioned accordingly [i.e., p(ω) =

p(α)p(σ 2
v )]. The conditional posterior distributions needed are

• f (α | Y,X,H,β, σ 2
v ) = f (α | H, σ 2

v ): Given H, ln ht follows an AR(1)
model. Therefore, the result of AR models discussed in the previous two sec-
tions applies. Specifically, if the prior distribution of α is multivariate normal
with mean αo and covariance matrix Co, then f (α | H, σ 2

v ) is multivariate
normal with mean α∗ and covariance matrix C∗, where

C−1∗ =
∑n

t=2 zt z′
t

σ 2
v

+ C−1
o , α∗ = C∗

(∑n
t=2 zt ln ht

σ 2
v

+ C−1
o αo

)
,

where zt = (1, ln ht−1)
′.

• f (σ 2
v | Y,X,H,β,α) = f (σ 2

v | H,α): Given H and α, we can calculate
vt = ln ht −α0 −α1 ln ht−1 for t = 2, . . . , n. Therefore, if the prior distribution
of σ 2

v is (mλ)/σ 2
v ∼ χ2

m , then the conditional posterior distribution of σ 2
v is an

inverted chi-squared distribution with m + n − 1 degrees of freedom, i.e.

mλ+∑n
t=2 v

2
t

σ 2
v

∼ χ2
m+n−1.

Remark: The formula (10.23) is for 1 < t < n, where n is the sample size.
For the two end data points h1 and hn , some modifications are needed. A simple
approach is to assume that h1 is fixed so that the drawing of ht starts with t = 2.
For t = n, one uses the result ln hn ∼ (α0 + α1 ln hn−1, σ

2
v ). Alternatively, one can

employ a forecast of hn+1 and a backward prediction of h0 and continue to apply
the formula. Since hn is the variable of interest, we forecast hn+1 by using a 2-step
ahead forecast at the forecast origin n − 1. For the model in Eq. (10.21), the forecast
of hn+1 is

ĥn−1(2) = α0 + α1(α0 + α1 ln hn−1).

The backward prediction of h0 is based on the time reversibility of the model

(ln ht − η) = α1(ln ht−1 − η)+ vt ,
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where η = α0/(1 − α1) and |α1 | < 1. The model of the reversed series is

(ln ht − η) = α1(ln ht+1 − η)+ v∗
t ,

where {v∗
t } is also a Gaussian white noise series with mean zero and variance σ 2

v .
Consequently, the 2-step backward prediction of h0 at time t = 2 is

ĥ2(−2) = α2
1(ln h2 − η).

Remark: The formula (10.23) can also be obtained by using results of a missing
value in an AR(1) model; see subsection 10.6.1. Specifically, assume that ln ht is
missing. For the AR(1) model in Eq. (10.21), this missing value is related to ln ht−1
and ln ht+1 for 1 < t < n. From the model, we have

ln ht = α0 + α1 ln ht−1 + at .

Define yt = α0 + α1 ln ht−1, xt = 1, and bt = −at . Then we obtain

yt = xt ln ht + bt . (10.24)

Next, from

ln ht+1 = α0 + α1 ln ht + at+1,

we define yt+1 = ln ht+1 − α0, xt+1 = α1 and bt+1 = at+1, and obtain

yt+1 = xt+1 ln ht + bt+1. (10.25)

Now Eqs. (10.24) and (10.25) form a special simple linear regression with two obser-
vations and an unknown parameter ln ht . Note that bt and bt+1 have the same distri-
bution because −at is also N (0, σ 2

v ). The least squares estimate of ln ht is then

l̂n ht = xt yt + xt+1 yt+1

x2
t + x2

t+1

= α0(1 − α1)+ α1(ln ht+1 + ln ht−1)

1 + α2
1

,

which is precisely the conditional mean of ln ht given in Eq. (10.23). In addition, this
estimate is normally distributed with mean ln ht and variance σ 2

v /(1 + α2
1). Formula

(10.23) is simply the product of at ∼ N (0, ht ) and l̂n ht ∼ N [ln ht , σ
2
v /(1 + α2

1)]
with the transformation d ln ht = h−1

t dht . This regression approach generalizes eas-
ily to other AR(p) models for ln ht . We use this approach and assume that {ht }p

t=1
are fixed for a stochastic volatility AR(p) model.

Remark: Starting values of ht can be obtained by fitting a volatility model of
Chapter 3 to the return series.
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Figure 10.3. Time plot of monthly log returns of S&P 500 index from 1962 to 1999.

Example 10.3. Consider the monthly log returns of the S&P 500 index from
January 1962 to December 1999 for 456 observations. Figure 10.3 shows the time
plot of the return measured in percentage. If GARCH models are entertained for the
series, we obtain a Gaussian GARCH(1, 1) model

rt = 0.658 + at , at = √
htεt

ht = 3.349 + 0.086a2
t−1 + 0.735ht−1, (10.26)

where t ratios of the coefficients are all greater than 2.52. The Ljung–Box statis-
tics of the standardized residuals and their squared series fail to indicate any model
inadequacy.

Next, consider the stochastic volatility model

rt = µ+ at , at = √
htεt

ln ht = α0 + α1 ln ht−1 + vt , (10.27)

where vt s are iid N (0, σ 2
v ). To implement the Gibbs sampling, we use the prior dis-

tributions

µ ∼ N (0, 9), α ∼ N [αo, diag(0.09, 0.04)], 5 × 0.2

σ 2
v

∼ χ2
5 ,
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Figure 10.4. Density functions of prior and posterior distributions of parameters in a stochas-
tic volatility model for the monthly log returns of S&P 500 index. The dashed line denotes
prior density and solid line denotes the posterior density, which is based on results of Gibbs
sampling with 5000 iterations. See the text for more details.

where αo = (0.4, 0.8)′. For initial parameter values, we use the fitted values of the
GARCH(1, 1) model in Eq. (10.26) for {ht } and set σ 2

v = 0.5 and µ = 0.66, which
is the sample mean. In addition, ht is drawn by using the Griddy Gibbs with 500 grid
points and the range of ht is (0, 1.5s2), where s2 is the sample variance of the log
return rt .

We ran the Gibbs sampling for 5100 iterations, but discarded results of the first
100 iterations. Figure 10.4 shows the density functions of the prior and posterior
distributions of the four coefficient parameters. The prior distributions used are rel-
atively noninformative. The posterior distributions are concentrated especially for µ
and σ 2

v . Figure 10.5 shows the time plots of fitted volatilities. The upper panel shows
the posterior mean of ht over the 5000 iterations for each time point, whereas the
lower panel shows the fitted values of the GARCH(1, 1) model in Eq. (10.26). The
two plots exhibit a similar pattern.

The posterior mean and standard error of the four coefficients are as follows:

Parameter µ α0 α1 σ 2
v

Mean 0.836 0.831 0.685 0.265
St. Error 0.177 0.183 0.069 0.056
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Figure 10.5. Time plots of fitted volatilities for monthly log returns of S&P 500 index from
1962 to 1999. The upper panel shows the posterior means of a Gibbs sampler with 5000
iterations. The lower panel shows the results of a GARCH(1, 1) model.

The posterior mean of α1 is 0.685, which is smaller than that obtained by Jacquier,
Polson, and Rossi (1994) who used daily returns of the S&P 500 index. But it con-
firms the strong serial dependence in the volatility series. Finally, we have used dif-
ferent initial values and 3100 iterations for other Gibbs sampler, the posterior means
of the parameters change slightly, but the series of posterior means of ht are stable.

10.7.2 Multivariate Stochastic Volatility Models

In this subsection, we study multivariate stochastic volatility models using the
Cholesky decomposition of Chapter 9. We focus on the bivariate case, but the meth-
ods discussed also apply to the higher dimensional case. Based on the Cholesky
decomposition, the innovation at of a return series rt is transformed into bt such that

b1t = a1t , b2t = a2t − q21,t b1t ,

where b2t and q21,t can be interpreted as the residual and least squares estimate of
the linear regression

a2t = q21,t a1t + b2t .



STOCHASTIC VOLATILITY MODELS 425

The conditional covariance matrix of at is parameterized by {g11,t , g22,t } and {q21,t }
as [

σ11,t σ12,t
σ21,t σ22,t

]
=
[

1 0
q21,t 1

] [
g11,t 0

0 g22,t

] [
1 q21,t
0 1

]
, (10.28)

where gii,t = Var(bit | Ft−1) and b1t ⊥ b2t . Thus, the quantities of interest are
g11,t , g22,t , and q21,t .

A simple bivariate stochastic volatility model for the return rt = (r1t , r2t )
′ is as

follows:

rt = β0 + β1xt + at (10.29)

ln gii,t = αi0 + αi1 ln gii,t−1 + vi t , i = 1, 2 (10.30)

q21,t = γ0 + γ1q21,t−1 + ut , (10.31)

where {at } is a sequence of serially uncorrelated Gaussian random vectors with
mean zero and conditional covariance matrix Σt given by Eq. (10.28), β0 is a two-
dimensional constant vector, xt denotes the explanatory variables, and {v1t }, {v2t },
and {ut } are three independent Gaussian white noise series such that Var(vi t ) = σ 2

iv
and Var(ut ) = σ 2

u . Again log transformation is used in Eq. (10.30) to ensure the
positiveness of gii,t .

Let Gi = (gii,1, . . . , gii,n)
′, G = [G1,G2], and Q = (q21,1, . . . , q21,n)

′. The
“traditional” parameters of the model in Eqs. (10.29)–(10.31) are β = (β0,β1),
ωi = (αi0, αi1, σ

2
iv) for i = 1, 2, and γ = (γ0, γ1, σ

2
u ). The augmented parame-

ters are Q, G1, and G2. To estimate such a bivariate stochastic volatility model via
Gibbs sampling, we use results of the univariate model in the previous subsection and
two additional conditional posterior distributions. Specifically, we can draw random
samples of

1. β0 and β1 row by row using the result (10.22);
2. g11,t using Eq. (10.23) with at being replaced by a1t ;
3. ω1 using exactly the same methods as those of the univariate case with at

replaced by a1t .

To draw random samples of ω2 and g22,t , we need to compute b2t . But this is easy
because b2t = a2t − q21,t a1t given the augmented parameter vector Q. Furthermore,
b2t is normally distributed with mean 0 and conditional variance g22,t .

It remains to consider the conditional posterior distributions

f (	 | Q, σ 2
u ), f (σ 2

u | Q,	), f (q21,t | A,G,Q−t ,γ),

where 	 = (γ0, γ1)
′ is the coefficient vector of Eq. (10.31) and A denotes the col-

lection of at , which is known if R, X, β0, and β1 are given. Given Q and σ 2
u , model

(10.31) is a simple Gaussian AR(1) model. Therefore, if the prior distribution of 	
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is bivariate normal with mean 	o and covariance matrix Do, then the conditional
posterior distribution of 	 is also bivariate normal with mean 	∗ and covariance
matrix D∗, where

D−1∗ =
∑n

t=2 zt z′
t

σ 2
u

+ D−1
o , 	∗ = D∗

(∑n
t=2 zt q21,t

σ 2
u

+ D−1
o 	o

)
,

where zt = (1, q21,t−1)
′. Similarly, if the prior distribution of σ 2

u is (mλ)/σ 2
u ∼ χ2

m ,
then the conditional posterior distribution of σ 2

u is

mλ+∑n
t=2 u2

t

σ 2
u

∼ χ2
m+n−1,

where ut = q21,t − γ0 − γ1q21,t−1. Finally,

f (q21,t | A,G,Q−t , σ
2
u ,	) (10.32)

∝ f (b2t | g22,t ) f (q21,t | q21,t−1,	, σ
2
u ) f (q21,t+1 | q21,t ,	, σ

2
u )

∝ g−0.5
22,t exp[−(a2t − q21,t a1t )

2/(2g22,t)] exp[−(q21,t − µt )
2/(2σ 2)],

where µt = [γ0(1 − γ1)+ γ1(q21,t−1 + q21,t+1)]/(1 + γ 2
1 ) and σ 2 = σ 2

u /(1 + γ 2
1 ).

In general, µt and σ 2 can be obtained by using the results of a missing value in an
AR(p) process. It turns out that Eq. (10.32) has a closed form distribution for q21,t .
Specifically, the first term of Eq. (10.32), which is the conditional distribution of q21,t
given g22,t and at , is normal with mean a2t/a1t and variance g22,t/(a1t )

2. The second
term of the equation is also normal with mean µt and variance σ 2. Consequently, by
Result 1 of Section 10.3, the conditional posterior distribution of q21,t is normal with
mean µ∗ and variance σ 2∗ , where

1

σ 2∗
= a2

1t

g22,t
+ 1 + γ 2

1

σ 2
u

, µ∗ = σ 2∗

(
1 + γ 2

1

σ 2
u

× µt + a2
1t

g22,t
× a2t

a1t

)

where µt is defined in Eq. (10.32).

Example 10.4. In this example, we study bivariate volatility models for the
monthly log returns of IBM stock and the S&P 500 index from January 1962
to December 1999. This is an expanded version of Example 10.3 by adding
the IBM returns. Figure 10.6 shows the time plots of the two return series. Let
rt = (IBMt ,SPt )

′. If time-varying correlation GARCH models with Cholesky
decomposition of Chapter 9 are entertained, we obtain the model

rt = β0 + at (10.33)

g11,t = α10 + α11g11,t−1 + α12a2
1,t−1 (10.34)
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Figure 10.6. Time plots of monthly log returns of IBM stock and the S&P 500 index from
1962 to 1999.

g22,t = α20 + α21a2
1,t−1 (10.35)

q21,t = γ0, (10.36)

where the estimates and their standard errors are given in Table 10.2(a). For com-
parison purpose, we employ the same mean equation in Eq. (10.33) and a stochastic
volatility model similar to that in Eqs. (10.34)–(10.36). The volatility equations are

ln g11,t = α10 + α11 ln g11,t−1 + v1t , Var(v1t ) = σ 2
1v (10.37)

ln g22,t = α20 + v2t , Var(v2t ) = σ 2
2v (10.38)

q21,t = γ0 + ut , Var(ut ) = σ 2
u . (10.39)

The prior distributions used are

βi0 ∼ N (0.8, 4), α1 ∼ N [(0.4, 0.8)′, diag(0.16, 0.04)], α20 ∼ N (5, 25),

γ0 ∼ N (0.4, .04),
10 × 0.1

σ 2
1v

∼ χ2
10,

5 × 0.2

σ 2
2v

∼ χ2
5 ,

5 × 0.2

σ 2
u

∼ χ2
5 .
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Table 10.2. Estimation of Bivariate Volatility Models for Monthly Log
Returns of IBM Stock and the S&P 500 Index from January 1962 to Decem-
ber 1999. The Stochastic Volatility Models Are Based on the Last 1000 Iter-
ations of a Gibbs Sampling with 1300 Total Iterations.

(a) Bivariate GARCH(1, 1) model with time-varying correlations

Parameter β01 β02 α10 α11 α12 α20 α21 γ0

Estimate 1.04 0.79 3.16 0.83 0.10 10.59 0.04 0.35
Std. Error 0.31 0.20 1.67 0.08 0.03 0.93 0.02 0.02

(b) Stochastic volatility model

Parameter β01 β02 α10 α11 σ 2
1v α20 σ 2

2v γ0 σ 2
u

Post.Mean 0.86 0.84 0.52 0.86 0.08 1.81 0.39 0.39 0.08
Std. Error 0.30 0.18 0.18 0.05 0.03 0.11 0.06 0.03 0.02

These prior distributions are relatively noninformative. We ran the Gibbs sampling
for 1300 iterations, but discarded results of the first 300 iterations. The random
samples of gii,t were drawn by Griddy Gibbs with 400 grid points in the intervals
[0, 1.5s2

i ], where s2
i is the sample variance of the log return rit . Posterior means and

standard errors of the “traditional” parameters of the bivariate stochastic volatility
model are given in Table 10.2(b).

To check for convergence of the Gibbs sampling, we ran the procedure several
times with different starting values and numbers of iterations. The results are stable.
For illustration, Figure 10.7 shows the scatterplots of various quantities for two dif-
ferent Gibbs samples. The first Gibbs sample is based on 300 + 1000 iterations, and
the second Gibbs sample is based on 500 + 3000 iterations, where M + N denotes
that the total number of Gibbs iterations is M + N , but results of the first M itera-
tions are discarded. The scatterplots shown are posterior means of g11,t , g22,t , q21,t ,
σ22,t , σ21,t , and the correlation ρ21,t . The line y = x is added to each plot to show
the closeness of the posterior means. The stability of the Gibbs sampling results is
clearly seen.

It is informative to compare the GARCH model with time-varying correlations
in Eqs. (10.33)–(10.36) with the stochastic volatility model. First, as expected, the
mean equations of the two models are essentially identical. Second, Figure 10.8
shows the time plots of fitted volatilities for IBM stock return. The upper panel
is for the GARCH model, and the lower panel shows the posterior mean of the
stochastic volatility model. The two models show similar volatility characteristics;
they exhibit volatility clusterings and indicate an increasing trend in volatility. How-
ever, the GARCH model produces higher peak volatility values. Third, Figure 10.9
shows the time plots of fitted volatilities for the S&P 500 index return. The GARCH
model produces an extra volatility peak around 1993. This additional peak does not
appear in the univariate analysis shown in Figure 10.5. It seems that for this particular
instance the bivariate GARCH model produces a spurious volatility peak. This spu-
rious peak is induced by its dependence on IBM returns and does not appear in the
stochastic volatility model. Indeed, the fitted volatilities of S&P 500 index return by
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Figure 10.7. Scatterplots of posterior means of various statistics of two different Gibbs sam-
ples for the bivariate stochastic volatility model for monthly log returns of IBM stock and
the S&P 500 index. The x-axis denotes results based on 500 + 3000 iterations and the y-axis
denotes results based on 300 + 1000 iterations. The notation is defined in the text.

the bivariate stochastic volatility model are similar to that of the univariate analysis.
Fourth, Figure 10.10 shows the time plots of fitted conditional correlations. Here the
two models differ substantially. The correlations of the GARCH model are relatively
smooth and positive with a mean value 0.55 and standard deviation 0.11. However,
the correlations produced by the stochastic volatility model vary markedly from one
month to another with a mean value 0.57 and standard deviation 0.17. Furthermore,
there are isolated occasions in which the correlation is negative. The difference is
understandable because q21,t contains the random shock ut in the stochastic volatil-
ity model.

Remark: The Gibbs sampling estimation applies to other bivariate stochastic
volatility models. The conditional posterior distributions needed require some exten-
sions of those discussed in this section, but they are based on the same ideas.

10.8 MARKOV SWITCHING MODELS

The Markov switching model is another econometric model for which MCMC meth-
ods enjoy many advantages over the traditional likelihood method. McCulloch and
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Figure 10.8. Time plots of fitted volatilities for monthly log returns of IBM stock from 1962
to 1999: (a) a GARCH model with time-varying correlations, and (b) a bivariate stochastic
volatility model estimated by Gibbs sampling with 300 + 1000 iterations.

Tsay (1994) discuss a Gibbs sampling procedure to estimate such a model when the
volatility in each state is constant over time. These authors applied the procedure
to estimate a Markov switching model with different dynamics and mean levels for
different states to the quarterly growth rate of U.S. real gross national product, sea-
sonally adjusted, and obtained some interesting results. For instance, the dynamics
of the growth rate are significantly different between periods of economic “contrac-
tion” and “expansion.” Since this chapter is concerned with asset returns, we focus
on models with volatility switching.

Suppose that an asset return rt follows a simple two-state Markov switching
model with different risk premiums and different GARCH dynamics:

rt =
{
β1

√
ht + √

htεt , ht = α10 + α11ht−1 + α12a2
t−1 if st = 1

β2
√

ht + √
htεt , ht = α20 + α21ht−1 + α22a2

t−1 if st = 2,
(10.40)

where at = √
htεt , {εt } is a sequence of Gaussian white noises with mean zero

and variance 1, and the parameters αi j satisfy some regularity conditions so that
the unconditional variance of at exists. The probability transition from one state to
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Figure 10.9. Time plots of fitted volatilities for monthly log returns of the S&P 500 index
from 1962 to 1999: (a) a GARCH model with time-varying correlations, and (b) a bivariate
stochastic volatility model estimated by Gibbs sampling with 300 + 1000 iterations.

another is governed by

P(st = 2 | st−1 = 1) = e1, P(st = 1 | st−1 = 2) = e2, (10.41)

where 0 < ei < 1. A small ei means that the return series has a tendency to stay in the
i th state with expected duration 1/ei . For the model in Eq. (10.40) to be identifiable,
we assume that β2 > β1 so that State 2 is associated with higher risk premium. This
is not a critical restriction because it is used to achieve uniqueness in labeling the
states. A special case of the model results if α1 j = α2 j for all j so that the model
assumes a GARCH model for all states. However, if βi

√
ht is replaced by βi , then

model (10.40) reduces to a simple Markov switching GARCH model.
Model (10.40) is a Markov switching GARCH-M model. For simplicity, we

assume that the initial volatility h1 is given with value equal to the sample variance
of rt . A more sophisticated analysis is to treat h1 as a parameter and estimate it jointly
with other parameters. We expect the effect of fixing h1 will be negligible in most
applications, especially when the sample size is large. The “traditional” parameters
of the Markov switching GARCH-M model are β = (β1, β2)

′, αi = (αi0, αi1, αi2)
′

for i = 1 and 2, and the transition probabilities e = (e1, e2)
′. The state vector
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Figure 10.10. Time plots of fitted correlation coefficients between monthly log returns of
IBM stock and the S&P 500 undex from 1962 to 1999: (a) a GARCH model with time-varying
correlations, and (b) a bivariate stochastic volatility model estimated by Gibbs sampling with
300 + 1000 iterations.

S = (s1, s2, . . . , sn)
′ contains the augmented parameters. The volatility vector

H = (h2, . . . , hn)
′ can be computed recursively if h1, αi , and the state vector S are

given.
Dependence of the return on volatility in model (10.40) implies that the return is

also serially correlated. The model thus has some predictivity in the return. However,
states of the future returns are unknown and a prediction produced by the model is
necessarily a mixture of those over possible state configurations. This often results
in high uncertainty in point prediction of future returns.

Turn to estimation. The likelihood function of model (10.40) is complicated as it
is a mixture over all possible state configurations. Yet the Gibbs sampling approach
only requires the following conditional posterior distributions:

f (β | R,S,H,α1,α2), f (αi | R,S,H,α j 	=i ),

P(S | R, h1,α1,α2), f (ei | S), i = 1, 2,

where R is the collection of observed returns. For simplicity, we use conjugate prior
distributions discussed in Section 10.3—that is,
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βi ∼ N (βio, σ
2
io), ei ∼ Beta(γi1, γi2).

The prior distribution of parameter αi j is uniform over a properly specified interval.
Since αi j is a nonlinear parameter of the likelihood function, we use the Griddy
Gibbs to draw its random realizations. A uniform prior distribution simplifies the
computation involved. Details of the conditional posterior distributions are given
below:

1. The posterior distribution of βi only depends on the data in State i . Define

rit =
{

rt/
√

ht if st = i
0 otherwise.

Then we have

rit = βi + εt , for st = i.

Therefore, information of the data on βi is contained in the sample mean of
rit . Let r̄i = ∑

st =i ri t/ni , where the summation is over all data points in State
i and ni is the number of data points in State i . Then the conditional posterior
distribution of βi is normal with mean β∗

i and variance σ 2
i∗, where

1

σ 2
i∗

= ni + 1

σ 2
io

, β∗
i = σ 2

i∗
(

ni r̄i + βio/σ
2
io

)
, i = 1, 2.

2. Next, the parameter αi j can be drawn one by one using the Griddy Gibbs
method. Given h1, S, αv 	=i and αiv with v 	= j , the conditional posterior
distribution function of αi j does not correspond to a well-known distribution,
but it can be evaluated easily as

f (αi j | .) ∝ −1

2

∑
st =i

[
ln ht + (rt − βi

√
ht )

2

ht

]
,

where ht contains αi j . We evaluate this function over a grid of points for αi j

over a properly specified interval. For example, 0 ≤ α11 < 1 − α12.

3. The conditional posterior distribution of ei only involves S. Let �1 be the num-
ber of switches from State 1 to State 2 and �2 be the number of switches from
State 2 to State 1 in S. Also, let ni be the number of data points in State i . Then
by Result 3 of conjugate prior distributions, the posterior distribution of ei is
Beta(γi1 + �i , γi2 + ni − �i ).

4. Finally, elements of S can be drawn one by one. Let S− j be the vector obtained
by removing s j from S. Given S− j and other information, s j can assume two
possibilities (i.e., s j = 1 or s j = 2), and its conditional posterior distribution
is
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P(s j | .) ∝
n∏

t= j

f (at | H)P(s j | S− j ).

The probability

P(s j = i | S− j ) = P(s j = i | s j−1, s j+1), i = 1, 2

can be computed by the Markov transition probabilities in Eq. (10.41). In addi-
tion, assuming s j = i , one can compute ht for t ≥ j recursively. The relevant
likelihood function, denoted by L(s j ), is given by

L(s j = i) ≡
n∏

t= j

f (at | H) ∝ exp( f ji ), f ji =
n∑

t= j

−1

2

[
ln(ht )+ a2

t

ht

]
,

for i = 1 and 2, where at = rt − β1
√

ht if st = 1 and at = rt − β2
√

ht

otherwise. Consequently, the conditional posterior probability of s j = 1 is

P(s j = 1 | .)

= P(s j = 1 | s j−1, s j+1)L(s j = 1)

P(s j = 1 | s j−1, s j+1)L(s j = 1)+ P(s j = 2 | s j−1, s j+1)L(s j = 2)
.

The state s j can then be drawn easily using a uniform distribution on the unit
interval [0, 1].

Remark: Since s j and s j+1 are highly correlated when e1 and e2 are small, it
is more efficient to draw several s j jointly. However, the computation involved in
enumerating the possible state configurations increases quickly with the number of
states drawn jointly.

Example 10.5. In this example, we consider the monthly log stock returns of
General Electric Company from January 1926 to December 1999 for 888 observa-
tions. The returns are in percentages and shown in Figure 10.11(a). For comparison
purpose, we start with a GARCH-M model for the series and obtain

rt = 0.182
√

ht + at , at = √
htεt ,

ht = 0.546 + 1.740ht−1 − 0.775ht−2 + 0.025a2
t−1, (10.42)

where rt is the monthly log return and {εt } is a sequence of independent Gaussian
white noises with mean zero and variance 1. All parameter estimates are highly sig-
nificant with p values less than 0.0006. The Ljung–Box statistics of the standardized
residuals and their squared series fail to suggest any model inadequacy. It is reassur-
ing to see that the risk premium is positive and significant. The GARCH model in
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Figure 10.11. (a) Time plot of the monthly log returns, in percentages, of GE stock from 1926
to 1999. (b) Time plot of the posterior probability of being in State 2 based on results of the
last 2000 iterations of a Gibbs sampling with 5000 + 2000 total iterations. The model used is
a two-state Markov switching GARCH-M model.

Eq. (10.42) can be written as

(1 − 1.765B + 0.775B2)a2
t = 0.546 + (1 − 0.025B)ηt ,

where ηt = a2
t − ht and B is the back-shift operator such that Ba2

t = a2
t−1. As

discussed in Chapter 3, the prior equation can be regarded as an ARMA(2, 1) model
with nonhomogeneous innovations for the squared series a2

t . The AR polynomial can
be factorized as (1 − 0.945B)(1 − 0.820B), indicating two real characteristic roots
with magnitudes less than 1. Consequently, the unconditional variance of rt is finite
and equal to 0.546/(1 − 1.765 + 0.775) ≈ 49.64.

Turn to Markov switching models. We use the following prior distributions:

β1 ∼ N (0.3, 0.09), β2 ∼ N (1.3, 0.09), εi ∼ Beta(5, 95).

The initial parameter values used are (a) ei = 0.1, (b) s1 is a Bernoulli trial with
equal probabilities and st is generated sequentially using the initial transition prob-
abilities, and (c) α1 = (1.0, 0.6, 0.2)′ and α2 = (2, 0.7, 0.1)′. Gibbs samples of



Table 10.3. A Fitted Markov Switching GARCH-M Model for the
Monthly Log Returns of GE Stock from January 1926 to December
1999. The Numbers Shown Are the Posterior Means and Standard
Deviations Based on a Gibbs Sampling With 5000 + 2000 Iterations.
Results of the First 5000 Iterations Are Discarded. The Prior Distri-
butions and Initial Parameter Estimates Are Given in the Text.

(a) State 1

Parameter β1 e1 α10 α11 α12

Post. Mean 0.111 0.089 2.070 0.844 0.033
Post. Std. 0.043 0.012 1.001 0.038 0.033

(b) State 2

Parameter β2 e2 α20 α21 α22

Post. Mean 0.247 0.112 2.740 0.869 0.068
Post. Std. 0.050 0.014 1.073 0.031 0.024

Difference between States

Parameter β2 − β1 e2 − e1 α20 − α10 α21 − α11 α22 − α12

Post. Mean 0.135 0.023 0.670 0.026 −0.064
Post. Std. 0.063 0.019 1.608 0.050 0.043
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Figure 10.12. Histograms of the risk premium and transition probabilities of a two-state
Markov switching GARCH-M model for the monthly log returns of GE stock from 1926 to
1999. The results are based on the last 2000 iterations of a Gibbs sampling with 5000 + 2000
total iterations.
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αi j are drawn using the Griddy Gibbs with 400 grid points, equally spaced over the
following ranges: αi0 ∈ [0, 6.0], αi1 ∈ [0, 1], and αi2 ∈ [0, 0.5]. In addition, we
implement the constraints αi1 + αi2 < 1 for i = 1, 2. The Gibbs sampler is run for
5000 + 2000 iterations, but only results of the last 2000 iterations are used to make
inference.

Table 10.3 shows the posterior means and standard deviations of parameters of the
Markov switching GARCH-M model in Eq. (10.40). In particular, it also contains
some statistics showing the difference between the two states such as θ = β2 − β1.
The difference between the risk premiums is statistically significant at the 5% level.
The differences in posterior means of the volatility parameters between the two states
appear to be insignificant. Yet the posterior distributions of volatility parameters
show some different characteristics. Figures 10.12 and 10.13 show the histograms
of all parameters in the Markov switching GARCH-M model. They exhibit some
differences between the two states. Figure 10.14 shows the time plot of the persis-
tent parameter αi1 + αi2 for the two states. It shows that the persistent parameter of
State 1 reaches the boundary 1.0 frequently, but that of State 2 does not. The expected
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Figure 10.13. Histograms of volatility parameters of a two-state Markov switching GARCH-
M model for the monthly log returns of GE stock from 1926 to 1999. The results are based on
the last 2000 iterations of a Gibbs sampling with 5000 + 2000 total iterations.
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Figure 10.14. Time plots of the persistent parameter αi1+αi2 of a two-state Markov switching
GARCH-M model for the monthly log returns of GE stock from 1926 to 1999. The results are
based on the last 2000 iterations of a Gibbs sampling with 5000 + 2000 total iterations.

durations of the two states are about 11 and 9 months, respectively. Figure 10.11(b)
shows the posterior probability of being in State 2 for each observation.

Finally, Figure 10.15 shows the fitted volatility series of the simple GARCH-M
model in Eq. (10.42) and the Markov switching GARCH-M model in Eq. (10.40).
The two fitted volatility series show similar pattern and are consistent with the behav-
ior of the squared log returns. The simple GARCH-M model produces a smoother
volatility series with lower estimated volatilities.

10.9 FORECASTING

Forecasting under the MCMC framework can be done easily. The procedure is sim-
ply to use the fitted model in each Gibbs iteration to generate samples for the fore-
casting period. In a sense, forecasting here is done by using the fitted model to simu-
late realizations for the forecasting period. We use the univariate stochastic volatility
model to illustrate the procedure; forecasts of other models can be obtained by the
same method.
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Figure 10.15. Fitted volatility series for the monthly log returns of GE stock from 1926 to
1999: (a) The squared log returns, (b) the GARCH-M model in Eq. (10.42), and (c) the two-
state Markov switching GARCH-M model in Eq. (10.40).

Consider the stochastic volatility model in Eqs. (10.20) and (10.21). Suppose that
there are n returns available and we are interested in predicting the return rn+i and
volatility hn+i for i = 1, . . . , �, where � > 0. Assume that the explanatory variables
x jt in Eq. (10.20) are either available or can be predicted sequentially during the
forecasting period. Recall that estimation of the model under the MCMC framework
is done by Gibbs sampling, which draws parameter values from their conditional
posterior distributions iteratively. Denote the parameters by β j = (β0, j , . . . , βp, j )

′,
α j = (α0, j , α1, j )

′, and σ 2
v, j for the j th Gibbs iteration. In other words, at the j th

Gibbs iteration, the model is

rt = β0, j + β1, j x1t + · · · + βp, j x pt + at (10.43)

ln ht = α0, j + α1, j ln ht−1 + vt , Var(vt ) = σ 2
v, j . (10.44)

We can use this model to generate a realization of rn+i and hn+i for i = 1, . . . , �.
Denote the simulated realizations by rn+i, j and hn+i, j , respectively. These realiza-
tions are generated as follows:
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• Draw a random sample vn+1 from N (0, σ 2
v, j ) and use Eq. (10.44) to compute

hn+1, j .

• Draw a random sample εn+1 from N (0, 1) to obtain an+1, j = √
hn+1, jεn+1

and use Eq. (10.43) to compute rn+1, j .

• Repeat the prior two steps sequentially for n + i with i = 2, . . . , �.

If we run a Gibbs sampling for M + N iterations in model estimation, we only need
to compute the forecasts for the last N iterations. This results in a random sample for
rn+i and hn+i . More specifically, we obtain

{rn+1, j , . . . , rn+�, j }N
j=1, {hn+1, j , . . . , hn+�, j }N

j=1.

These two random samples can be used to make inference. For example, point fore-
casts of the return rn+i and volatility hn+i are simply the sample means of the two
random samples. Similarly, the sample standard deviations can be used as the vari-
ances of forecast errors. To improve the computational efficiency in volatility fore-
cast, importance sampling can be used; see Gelman, Carlin, Stern, and Rubin (1995,
p.307).

Example 10.6. (Example 10.3 continued.) As a demonstration, we consider
the monthly log return series of S&P 500 index from 1962 to 1999. Table 10.4 gives
the point forecasts of the return and its volatility for five forecast horizons starting
with December 1999. Both the GARCH model in Eq. (10.26) and the stochastic
volatility model in Eq. (10.27) are used in the forecasting. The volatility forecasts of
the GARCH(1, 1) model increase gradually with the forecast horizon to the uncon-
ditional variance 3.349/(1 − 0.086 − 0.735) = 18.78. The volatility forecasts of the
stochastic volatility model are higher than those of the GARCH model. This is under-
standable because the stochastic volatility model takes into consideration the param-

Table 10.4. Volatility Forecasts for the Monthly Log Return
of S&P 500 Index. The Data Span Is From January 1962 to
December 1999 and the Forecast Origin Is December 1999.
Forecasts of the Stochastic Volatility Model Are Obtained by
a Gibbs Sampling with 2000 + 2000 Iterations.

(a) Log return

Horizon 1 2 3 4 5
GARCH 0.66 0.66 0.66 0.66 0.66
SVM 0.53 0.78 0.92 0.88 0.84

(b) Volatility

Horizon 1 2 3 4 5
GARCH 17.98 18.12 18.24 18.34 18.42
SVM 19.31 19.36 19.35 19.65 20.13
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eter uncertainty in producing forecasts. In contrast, the GARCH model assumes that
the parameters are fixed and given in Eq. (10.26). This is an important difference
and is one of the reasons that GARCH models tend to underestimate the volatility in
comparison with the implied volatility obtained from derivative pricing.

Remark: Besides the advantage of taking into consideration parameter uncer-
tainty in forecast, the MCMC method produces in effect a predictive distribution of
the volatility of interest. The predictive distribution is more informative than a simple
point forecast. It can be used, for instance, to obtain the quantiles needed in Value at
Risk calculation.

10.10 OTHER APPLICATIONS

The MCMC method is applicable to many other financial problems. For example,
Zhang, Russell, and Tsay (2000) use it to analyze information determinants of bid
and ask quotes, McCulloch and Tsay (2000) use the method to estimate a hierarchical
model for IBM transaction data, and Eraker (2001) and Elerian, Chib and Shephard
(2001) use it to estimate diffusion equations. The method is also useful in Value at
Risk calculation because it provides a natural way to evaluate predictive distribu-
tions. The main question is not whether the methods can be used in most financial
applications, but how efficient the methods can become. Only time and experience
can provide an adequate answer to the question.

EXERCISES

1. Suppose that x is normally distributed with mean µ and variance 4. Assume that
the prior distribution of µ is also normal with mean 0 and variance 25. What is
the posterior distribution of µ given the data point x?

2. Consider the linear regression model with time-series errors in Section 10.5.
Assume that zt is an AR(p) process (i.e., zt = φ1zt−1 + · · · + φpzt−p + at ).
Let φ = (φ1, . . . , φp)

′ be the vector of AR parameters. Derive the conditional
posterior distributions of f (β | Y,X,φ, σ 2), f (φ | Y,X,β, σ 2), and f (σ 2 |
Y,X,β,φ) assuming that conjugate prior distributions are used—that is,

β ∼ N (βo,Σo), φ ∼ N (φo,Ao), (vλ)/σ 2 ∼ χ2
v .

3. Consider the linear AR(p) model in Subsection 10.6.1. Suppose that xh and xh+1
are two missing values with a joint prior distribution being multivariate normal
with mean µo and covariance matrix Σo. Other prior distributions are the same as
that in the text. What is the conditional posterior distribution of the two missing
values?
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4. Consider the monthly log returns of General Motors stock from 1950 to 1999 with
600 observations: (a) build a GARCH model for the series, (b) build a stochastic
volatility model for the series, and (c) compare and discuss the two volatility
models.

5. Build a stochastic volatility model for the daily log return of Cisco Systems stock
from January 1991 to December 1999. You may download the data from CRSP
database or the file “d-csco9199.dat.” Use the model to obtain a predictive distri-
bution for 1-step ahead volatility forecast at the forecast origin December 1999.
Finally, use the predictive distribution to compute the Value at Risk of a long
position worth $1 million with probability 0.01 for the next trading day.

6. Build a bivariate stochastic volatility model for the monthly log returns of General
Motors stock and the S&P 500 index for the sample period from January 1950 to
December 1999. Discuss the relationship between the two volatility processes and
compute the time-varying beta for GM stock.
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equal-weighted index, 17, 45, 46, 73,

129,
160

GE stock return, 434
Hewlett-Packard stock return, 338
Hong Kong market index, 365
IBM stock return, 17, 25, 104, 111, 115,

131, 149, 160, 230, 261, 264, 267,
268, 277, 280, 288, 303, 338, 368,
383, 426

IBM transactions, 182, 184, 188, 192,
203, 210

Intel stock return, 17, 81, 90, 268, 338,
377, 385

Japan market index, 365
Johnson and Johnson’s earning, 61
Mark/Dollar exchange rate, 83
Merrill Lynch stock return, 338
Microsoft stock return, 17
Morgan Stanley Dean Witter stock

return, 338
SP 500 excess return, 95, 108
SP 500 index futures, 332, 334
SP 500 index return, 111, 113, 117, 303,

368, 377, 383, 422, 426
SP 500 spot price, 334
U.S. government bond, 19, 305, 347
U.S. interest rate, 19, 66, 408, 416
U.S. real GNP, 33, 136
U.S. unemployment rate, 164
value-weighted index, 17, 25, 37, 73,

103,
160

Data augmentation, 396
Decomposition model, 190
Descriptive statistics, 14
Dickey-Fuller test, 61
Differencing, 60

seasonal, 62
Distribution

beta, 402
double exponential, 245
Frechet family, 272
Gamma, 213, 401
generalized error, 103
generalized extreme value, 271
generalized Gamma, 215
generalized Pareto, 291

inverted chi-squared, 403
multivariate normal, 353, 401
negative binomial, 402
Poisson, 402
posterior, 400
prior, 400

conjugate, 400
Weibull, 214

Diurnal pattern, 181
Donsker’s theorem, 224
Duration

between trades, 182
model, 194

Durbin-Watson statistic, 72

EGARCH model, 102
forecasting, 105

Eigenvalue, 350
Eigenvector, 350
EM algorithm, 396
Error-correction model, 331
Estimation, extreme value parameter,

273
Exact likelihood method, 46
Exceedance, 284
Exceeding times, 284
Excess return, 5
Extended autocorrelation function,

51
Extreme value theory, 270

Factor analysis, 342
Factor model, estimation, 343
Factor rotation, varimax, 345
Forecast

horizon, 39
origin, 39

Forecasting, MCMC method, 438
Fractional differencing, 72

GARCH model, 93
Cholesky decomposition, 374
multivariate, 363

diagonal, 367
time-varying correlation, 372

GARCH-M model, 101, 431
Geometric ergodicity, 130
Gibbs sampling, 397
Griddy Gibbs, 405



INDEX 447

Hazard function, 216
Hh function, 250
Hill estimator, 275
Hyper-parameter, 406

Identifiability, 322
IGARCH model, 100, 259
Implied volatility, 80
Impulse response function, 55
Inverted yield curve, 68
Invertibility, 331
Invertible ARMA model, 55
Ito’s lemma, 228

multivariate, 242
Ito’s process, 226

Joint distribution function, 7
Jump diffusion, 244

Kernel, 139
bandwidth, 140
Epanechnikov, 140
Gaussian, 140

Kernel regression, 139
Kurtosis, 8

excess, 9

Lag operator, 33
Lead-lag relationship, 301
Likelihood function, 14
Linear time series, 27
Liquidity, 179
Ljung–Box statistic, 25, 87

multivariate, 308
Local linear regression, 143
Log return, 4
Logit model, 209
Long-memory

stochastic volatility, 111
time series, 72

Long position, 5

Marginal distribution, 7
Markov process, 395
Markov property, 29
Markov switching model, 135, 429
Martingale difference, 93
Maximum likelihood estimate, exact,

320

MCMC method, 146
Mean equation, 82
Mean reversion, 41, 56
Metropolis algorithm, 404
Metropolis–Hasting algorithm, 405
Missing value, 410
Model checking, 39
Moment, of a random variable, 8
Moving-average model, 42

Nadaraya–Watson estimator, 139
Neural network, 146

activation function, 147
feed-forward, 146
skip layer, 148

Neuron, see neural network, 146
Node, see neural network, 146
Nonlinearity test, 152

BDS, 154
bispectral, 153
F-test, 157
Kennan, 156
RESET, 155
Tar-F, 159

Nonstationarity, unit-root, 56
Nonsynchronous trading, 176
Nuisance parameter, 158

Options
American, 222
at-the-money, 222
European call, 79
in-the-money, 222
out-of-the-money, 222
stock, 222
strike price, 79, 222

Order statistics, 267
Ordered probit model, 187
Orthogonal factor model, 342
Outlier

additive, 410
detection, 413

Parametric bootstrap, 161
Partial autoregressive function (PACF),

36
PCD model, 207
π -weight, 55
Pickands estimator, 275
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Poisson process, 244
inhomogeneous, 290
intensity function, 286

Portmanteau test, 25. See also Ljung–Box
statistic, 308

Positive definite matrix, 350
Present value, 4
Principal component analysis, 335, 383
ψ-weight, 28
Put-call parity, 236

Quantile, 7
definition, 258

Random coefficient (RCA) model, 109
Random walk, 56

with drift, 57
Reduced form model, 309
Regression, with time series errors, 66
RiskMetrics, 259

Sample autocorrelation, 24
Scree plot, 341
Seasonal adjustment, 62
Seasonal model, 61

multiplicative, 63
Shape parameter, of a distribution,

271
Shock, 40, 82
Short position, 5
Simple return, 2
Skewness, 8
Smoothing, 138
Square root of time rule, 260
Standard Brownian motion, 61
State-space model

nonlinear, 145
Stationarity, 23

weak, 300
Stochastic diffusion equation, 226

Stochastic volatility model, 110, 418
multivariate, 424

Structural form, 310
Student-t distribution

standardized, 88
Survival function, 286

Tail index, 271
Threshold, 131
Threshold autoregressive model

multivariate, 333
self-exciting, 131
smooth, 134

Threshold co-integration, 334
Time plot, 14
Transactions data, 181

Unit-root test, 60
Unit-root time series, 56

Value at Risk, 256, 385
VaR

econometric approach, 262
homogeneous Poisson process, 288
inhomogeneous Poisson process, 289
RiskMetrics, 259
of a short position, 283
traditional extreme value, 279

Vector AR model, 309
Vector ARMA model, 322

marginal models, 327
Vector MA model, 318
Volatility, 79
Volatility equation, 82
Volatility model, factor, 383
Volatility smile, 244

White noise, 26
Wiener process, 223

generalized, 225


